2024屆陜西省西安市西北大學(xué)附中高二上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第1頁
2024屆陜西省西安市西北大學(xué)附中高二上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第2頁
2024屆陜西省西安市西北大學(xué)附中高二上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第3頁
2024屆陜西省西安市西北大學(xué)附中高二上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第4頁
2024屆陜西省西安市西北大學(xué)附中高二上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆陜西省西安市西北大學(xué)附中高二上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.執(zhí)行如圖所示的程序框圖,則輸出的的值是()A. B.C. D.2.函數(shù)f(x)=的圖象大致形狀是()A. B.C. D.3.曲線在點(diǎn)處的切線過點(diǎn),則實(shí)數(shù)()A. B.0C.1 D.24.已知函數(shù),,若,使得,則實(shí)數(shù)的取值范圍是()A. B.C. D.5.若拋物線焦點(diǎn)與橢圓的右焦點(diǎn)重合,則的值為A. B.C. D.6.我國新冠肺炎疫情防控進(jìn)入常態(tài)化,各地有序進(jìn)行疫苗接種工作,下面是我國甲、乙兩地連續(xù)11天的疫苗接種指數(shù)折線圖,根據(jù)該折線圖,下列說法不正確的是()A.這11天甲地指數(shù)和乙地指數(shù)均有增有減B.第3天至第11天,甲地指數(shù)和乙地指數(shù)都超過80%C.在這11天期間,乙地指數(shù)的增量大于甲地指數(shù)的增量D.第9天至第11天,乙地指數(shù)的增量大于甲地指數(shù)的增量7.若函數(shù)單調(diào)遞增,則實(shí)數(shù)a的取值范圍為()A. B.C. D.8.2021年4月29日,中國空間站天和核心艙發(fā)射升空,這標(biāo)志著中國空間站在軌組裝建造全面展開,我國載人航天工程“三步走”戰(zhàn)略成功邁出第三步.到今天,天和核心艙在軌已經(jīng)九個(gè)多月.在這段時(shí)間里,空間站關(guān)鍵技術(shù)驗(yàn)證階段完成了5次發(fā)射、4次航天員太空出艙、1次載人返回、1次太空授課等任務(wù).一般來說,航天器繞地球運(yùn)行的軌道近似看作為橢圓,其中地球的球心是這個(gè)橢圓的一個(gè)焦點(diǎn),我們把橢圓軌道上距地心最近(遠(yuǎn))的一點(diǎn)稱作近(遠(yuǎn))地點(diǎn),近(遠(yuǎn))地點(diǎn)與地球表面的距離稱為近(遠(yuǎn))地點(diǎn)高度.已知天和核心艙在一個(gè)橢圓軌道上飛行,它的近地點(diǎn)高度大約351km,遠(yuǎn)地點(diǎn)高度大約385km,地球半徑約6400km,則該軌道的離心率為()A. B.C. D.9.下列關(guān)于函數(shù)及其圖象的說法正確的是()A.B.最小正周期為C.函數(shù)圖象的對稱中心為點(diǎn)D.函數(shù)圖象的對稱軸方程為10.已知等差數(shù)列的公差,若,,則該數(shù)列的前項(xiàng)和的最大值為()A.30 B.35C.40 D.4511.拋擲一枚質(zhì)地均勻的骰子兩次,記{兩次的點(diǎn)數(shù)均為奇數(shù)},{兩次的點(diǎn)數(shù)之和為8},則()A. B.C. D.12.等差數(shù)列中,若,,則等于()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.求值______.14.已知函數(shù),數(shù)列是正項(xiàng)等比數(shù)列,且,則__________15.某工廠的某種型號的機(jī)器的使用年限和所支出的維修費(fèi)用(萬元)有下表的統(tǒng)計(jì)資料:23456223.85.56.57.0根據(jù)上表可得回歸直線方程,則=_____.16.已知數(shù)列是公差不為零的等差數(shù)列,,,成等比數(shù)列,第1,2項(xiàng)與第10,11項(xiàng)的和為68,則數(shù)列的通項(xiàng)公式是________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知某學(xué)校的初中、高中年級的在校學(xué)生人數(shù)之比為9:11,該校為了解學(xué)生的課下做作業(yè)時(shí)間,用分層抽樣的方法在初中、高中年級的在校學(xué)生中共抽取了100名學(xué)生,調(diào)查了他們課下做作業(yè)的時(shí)間,并根據(jù)調(diào)查結(jié)果繪制了如下頻率分布直方圖:(1)在抽取的100名學(xué)生中,初中、高中年級各抽取的人數(shù)是多少?(2)根據(jù)頻率分布直方圖,估計(jì)學(xué)生做作業(yè)時(shí)間的中位數(shù)和平均時(shí)長(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);(3)另據(jù)調(diào)查,這100人中做作業(yè)時(shí)間超過4小時(shí)的人中2人來自初中年級,3人來自高中年級,從中任選2人,恰好1人來自初中年級,1人來自高中年級的概率是多少18.(12分)如圖,三棱錐中,為等邊三角形,且面面,(1)求證:;(2)當(dāng)與平面BCD所成角為45°時(shí),求二面角的余弦值19.(12分)在等差數(shù)列中,設(shè)前項(xiàng)和為,已知,.(1)求的通項(xiàng)公式;(2)令,求數(shù)列的前項(xiàng)和.20.(12分)在正方體中,E,F(xiàn)分別是,的中點(diǎn)(1)求證:∥平面;(2)求平面與平面EDC所成的二面角的正弦值21.(12分)寫出下列命題的否定,并判斷它們的真假:(1):任意兩個(gè)等邊三角形都是相似的;(2):,.22.(10分)已知圓,圓心在直線上(1)求圓的標(biāo)準(zhǔn)方程;(2)求直線被圓截得的弦的長

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】由題意確定流程圖的功能,然后計(jì)算其輸出值即可.【詳解】運(yùn)行程序,不滿足,,,不滿足,,,不滿足,,,不滿足,,,不滿足,,,不滿足,,,滿足,利用裂項(xiàng)求和可得:.故選:C.【點(diǎn)睛】識別、運(yùn)行程序框圖和完善程序框圖的思路:(1)要明確程序框圖的順序結(jié)構(gòu)、條件結(jié)構(gòu)和循環(huán)結(jié)構(gòu)(2)要識別、運(yùn)行程序框圖,理解框圖所解決的實(shí)際問題(3)按照題目的要求完成解答并驗(yàn)證2、B【解析】利用函數(shù)的奇偶性排除選項(xiàng)A,C,然后利用特殊值判斷即可【詳解】解:由題得函數(shù)的定義域?yàn)?,關(guān)于原點(diǎn)對稱.所以函數(shù)是奇函數(shù),排除選項(xiàng)A,C.當(dāng)時(shí),,排除選項(xiàng)D,故選:B3、A【解析】由導(dǎo)數(shù)的幾何意義得切線方程為,進(jìn)而得.【詳解】解:因?yàn)?,,,所以,切線方程為,因?yàn)榍芯€過點(diǎn),所以,解得故選:A4、A【解析】由定義證明函數(shù)的單調(diào)性,再由函數(shù)不等式恒能成立的性質(zhì)得出,從而得出實(shí)數(shù)的取值范圍.【詳解】任取,,即函數(shù)在上單調(diào)遞減,若,使得,則即故選:A【點(diǎn)睛】結(jié)論點(diǎn)睛:本題考查不等式恒成立問題,解題關(guān)鍵是轉(zhuǎn)化為求函數(shù)的最值,轉(zhuǎn)化時(shí)要注意全稱量詞與存在量詞對題意的影響.等價(jià)轉(zhuǎn)化如下:(1),,使得成立等價(jià)于(2),,不等式恒成立等價(jià)于(3),,使得成立等價(jià)于(4),,使得成立等價(jià)于5、D【解析】解:橢圓的右焦點(diǎn)為(2,0),所以拋物線的焦點(diǎn)為(2,0),則,故選D6、C【解析】由折線圖逐項(xiàng)分析得到答案.【詳解】對于選項(xiàng)A,從折線圖中可以直接觀察出甲地和乙地的指數(shù)有增有減,故選項(xiàng)A正確;對于選項(xiàng)B,從第3天至第11天,甲地指數(shù)和乙地指數(shù)都超過80%,故選項(xiàng)B正確;對于選項(xiàng)C,從折線圖上可以看出這11天甲的增量大于乙的增量,故選項(xiàng)C錯(cuò)誤;對于選項(xiàng)D,從折線圖上可以看出第9天至第11天,乙地指數(shù)的增量大于甲地指數(shù)的增量,故D正確;故選:C.7、D【解析】根據(jù)函數(shù)的單調(diào)性,可知其導(dǎo)數(shù)在R上恒成立,分離參數(shù),即可求得答案.【詳解】由題意可知單調(diào)遞增,則在R上恒成立,可得恒成立,當(dāng)時(shí),取最小值-1,故,故選:D8、A【解析】根據(jù)遠(yuǎn)地點(diǎn)和近地點(diǎn),求出軌道即橢圓的半長軸和半焦距,即可求得答案.【詳解】設(shè)橢圓的半長軸為a,半焦距為c.則根據(jù)題意得;解得,故該軌道即橢圓的離心率為,故選:A9、D【解析】化簡,利用正弦型函數(shù)的性質(zhì),依次判斷,即可【詳解】∵∴,A選項(xiàng)錯(cuò)誤;的最小正周期為,B選項(xiàng)錯(cuò)誤;令,則,故函數(shù)圖象的對稱中心為點(diǎn),C選項(xiàng)錯(cuò)誤;令,則,所以函數(shù)圖象的對稱軸方程為,D選項(xiàng)正確故選:D10、D【解析】利用等差數(shù)列的性質(zhì)求出公差以及首項(xiàng),再由等差數(shù)列的前項(xiàng)和公式即可求解.【詳解】等差數(shù)列,由,有,又,公差,所以,,得,,,∴當(dāng)或10時(shí),最大,,故選:D11、B【解析】利用條件概率公式進(jìn)行求解.【詳解】,其中表示:兩次點(diǎn)數(shù)均為奇數(shù),且兩次點(diǎn)數(shù)之和為8,共有兩種情況,即,故,而,所以,故選:B12、C【解析】由等差數(shù)列下標(biāo)和性質(zhì)可得.【詳解】因?yàn)椋?,所?故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】將原式子變形為:,將代入變形后的式子得到結(jié)果即可.【詳解】將代入變形后的式子得到結(jié)果為故答案為:14、##9.5【解析】根據(jù)給定條件計(jì)算當(dāng)時(shí),的值,再結(jié)合等比數(shù)列性質(zhì)計(jì)算作答.【詳解】函數(shù),當(dāng)時(shí),,因數(shù)列是正項(xiàng)等比數(shù)列,且,則,,同理,令,又,則有,,所以.故答案為:15、08##【解析】根據(jù)表格中的數(shù)據(jù)求出,將點(diǎn)代入回歸直線求出即可.【詳解】由表格可得,,由于回歸直線過點(diǎn),故,解得,故答案為:0.08.16、【解析】利用基本量結(jié)合已知列方程組求解即可.【詳解】設(shè)等差數(shù)列的公差為由題可知即因?yàn)?,所以解得:所?故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)初中、高中年級所抽取人數(shù)分別為45、55(2)2.375小時(shí),2.4小時(shí)(3)【解析】(1)依據(jù)分層抽樣的原則列方程即可解決;(2)依據(jù)頻率分布直方圖計(jì)算學(xué)生做作業(yè)時(shí)間的中位數(shù)和平均時(shí)長即可;(3)依據(jù)古典概型即可求得恰好1人來自初中年級,1人來自高中年級的概率.【小問1詳解】設(shè)初中、高中年級所抽取人數(shù)分別為x、y,由已知可得,解得;【小問2詳解】的頻率為,的頻率為,的頻率為因?yàn)?,,所以中位?shù)在區(qū)間上,設(shè)為x,則,解得,所以學(xué)生做作業(yè)時(shí)間的中位數(shù)為2.375小時(shí);平均時(shí)長為小時(shí).故估計(jì)學(xué)生做作業(yè)時(shí)間的中位數(shù)為2.375小時(shí),平均時(shí)長為2.4小時(shí)【小問3詳解】2人來自初中年級,記為,,3人來自高中年級,記為,,,則從中任選2人,所有可能結(jié)果有:,,,,,,,,,共10種,其中恰好1人來自初中年級,1人來自高中年級有6種可能,所以恰好1人來自初中年級,1人來自高中年級的概率為18、(1)證明見解析;(2).【解析】(1)根據(jù)給定條件證得平面即可推理作答.(2)由與平面BCD所成角確定正邊長與CD長的關(guān)系,再作出二面角的平面角,借助余弦定理計(jì)算作答.【小問1詳解】在三棱錐中,平面平面,平面平面,而,平面,因此有平面,又有平面,所以.【小問2詳解】取BC中點(diǎn)F,連接AF,DF,如圖,因?yàn)榈冗吶切危瑒t,而平面平面,平面平面,平面,于是得平面,是與平面BCD所成角,即,令,則,因,即有,由(1)知,,則有,過C作交AD于O,在平面內(nèi)過O作交BD于E,連CE,從而得是二面角的平面角,中,,,中,由余弦定理得,,,顯然E是斜邊中點(diǎn),則,中,由余弦定理得,所以二面角的余弦值.19、(1)(2)【解析】(1)根據(jù)等差數(shù)列的前項(xiàng)和公式,即可求解公差,再計(jì)算通項(xiàng)公式;(2)根據(jù)(1)的結(jié)果,利用裂項(xiàng)相消法求和.【小問1詳解】設(shè)的公差為,由已知得,解得,所以.【小問2詳解】所以.20、(1)見解析;(2).【解析】(1)連接,,連接,證明CE∥即可;(2)建立空間直角坐標(biāo)系,求出平面與平面EDC的法向量,利用向量法求二面角的正弦值.【小問1詳解】如圖,連接,,連接,∵BC∥且BC=,∴四邊形是平行四邊形,∴∥且,∵E是中點(diǎn),G是中點(diǎn),∴∥CG且,∴四邊形是平行四邊形,∴∥CE,∵平面,CE平面,∴CE∥平面;【小問2詳解】如圖建立空間直角坐標(biāo)系,設(shè)正方體的棱長為2,則,則,設(shè)平面的法向量為,則,??;設(shè)平面EDC的法向量為,則,取,則;設(shè)平面與平面EDC所成的二面角的平面角為α,則,∴21、(1)存在兩個(gè)等邊三角形不是相似的,假命題(2),真命題【解析】根據(jù)全稱命題與存在性命題的關(guān)系,準(zhǔn)確改寫,即可求解.【小問1詳解】解:命題“任意兩個(gè)等邊三角形都是相似的”是一個(gè)全稱命題根據(jù)全稱命題與存在性命題的關(guān)系,可得其否定“存在兩個(gè)等邊三角形不是相似的”,命題為假命題.【小問2詳解】解:根據(jù)全稱命題與存在性命題關(guān)系,可得:命題的否定為.因?yàn)椋悦}為真命題.22、(1);(2)【解析】(1)由圓的一般

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論