2024屆遼寧省丹東市鳳城市一中高二上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第1頁
2024屆遼寧省丹東市鳳城市一中高二上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第2頁
2024屆遼寧省丹東市鳳城市一中高二上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第3頁
2024屆遼寧省丹東市鳳城市一中高二上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第4頁
2024屆遼寧省丹東市鳳城市一中高二上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆遼寧省丹東市鳳城市一中高二上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知為等差數(shù)列,為其前n項和,,則下列和與公差無關(guān)的是()A. B.C. D.2.函數(shù)的值域為()A. B.C. D.3.已知拋物線的焦點與橢圓的一個焦點重合,過坐標(biāo)原點作兩條互相垂直的射線,,與分別交于,則直線過定點()A. B.C. D.4.已知定義域為R的函數(shù)f(x)不是偶函數(shù),則下列命題一定為真命題的是()A.?x∈R,f(-x)≠f(x)B.?x∈R,f(-x)≠-f(x)C?x0∈R,f(-x0)≠f(x0)D.?x0∈R,f(-x0)≠-f(x0)5.已知等差數(shù)列的前項和為,,,當(dāng)取最大時的值為()A. B.C. D.6.橢圓()的右頂點是拋物線的焦點,且短軸長為2,則該橢圓方程為()A. B.C. D.7.已知直線,,,則m值為()A. B.C.3 D.108.如圖,在平行六面體中,設(shè),,,用基底表示向量,則()A. B.C. D.9.已知曲線的方程為,則下列說法正確的是()①曲線關(guān)于坐標(biāo)原點對稱;②曲線是一個橢圓;③曲線圍成區(qū)域的面積小于橢圓圍成區(qū)域的面積.A.① B.①②C.③ D.①③10.已知圓:的面積被直線平分,圓:,則圓與圓的位置關(guān)系是()A.相離 B.相交C.內(nèi)切 D.外切11.已知正三棱柱的側(cè)棱長與底面邊長相等,則AB1與側(cè)面ACC1A1所成角的正弦值等于A. B.C. D.12.為迎接2022年冬奧會,某校在體育冰球課上加強冰球射門訓(xùn)練,現(xiàn)從甲、乙兩隊中各選出5名球員,并分別將他們依次編號為1,2,3,4,5進行射門訓(xùn)練,他們的進球次數(shù)如折線圖所示,則在這次訓(xùn)練中以下說法正確的是()A.甲隊球員進球的中位數(shù)比乙隊大 B.乙隊球員進球的中位數(shù)比甲隊大C.乙隊球員進球水平比甲隊穩(wěn)定 D.甲隊球員進球數(shù)的極差比乙隊小二、填空題:本題共4小題,每小題5分,共20分。13.等差數(shù)列前項之和為,若,則________14.如果點在運動過程中,總滿足關(guān)系式,記滿足此條件的點M的軌跡為C,直線與C交于D,E,已知,則周長的最大值為______15.若是直線外一點,為線段的中點,,,則______16.甲口袋中裝有2個黑球和1個白球,乙口袋中裝有3個白球.現(xiàn)同時從甲、乙兩口袋中各任取一個球交換放入對方口袋,共進行了2次這樣的操作后,甲口袋中恰有2個黑球的概率為__________________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在下列所給的三個條件中任選一個,補充在下面的問題中,并加以解答①過(-1,2);②與直線平行;③與直線垂直問題:已知直線過點M(3,5),且______(1)求的方程;(2)若與圓相交于點A、B,求弦AB的長18.(12分)已知橢圓的左、右焦點分別為,,離心率為,過左焦點的直線l與橢圓C交于A,B兩點,的周長為8(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)如圖,,是橢圓C的短軸端點,P是橢圓C上異于點,的動點,點Q滿足,,求證與的面積之比為定值19.(12分)公差不為0的等差數(shù)列中,,且成等比數(shù)列(1)求數(shù)列的通項公式;(2)設(shè),數(shù)列的前n項和為.若,求的取值范圍20.(12分)已知拋物線的頂點在原點,焦點在軸上,且拋物線上有一點到焦點的距離為3,直線與拋物線交于,兩點,為坐標(biāo)原點(1)求拋物線的方程;(2)求的面積.21.(12分)已知等差數(shù)列}的公差為整數(shù),為其前n項和,,(1)求{}的通項公式:(2)設(shè),數(shù)列的前n項和為,求22.(10分)甲、乙兩人獨立地對某一目標(biāo)射擊,已知甲、乙能擊中的概率分別為,求:(1)甲、乙恰好有一人擊中的概率;(2)目標(biāo)被擊中的概率

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】依題意根據(jù)等差數(shù)列的通項公式可得,再根據(jù)等差數(shù)列前項和公式計算可得;【詳解】解:因為,所以,即,所以,,,,故選:C2、C【解析】根據(jù)基本不等式即可求出【詳解】因為,當(dāng)且僅當(dāng)時取等號,所以函數(shù)的值域為故選:C3、A【解析】由橢圓方程可求得坐標(biāo),由此求得拋物線方程;設(shè),與拋物線方程聯(lián)立可得韋達定理的形式,根據(jù)可得,由此構(gòu)造方程求得,根據(jù)直線過定點的求法可求得定點.【詳解】由橢圓方程知其焦點坐標(biāo)為,又拋物線焦點,,解得:,則拋物線的方程為,由題意知:直線斜率不為,可設(shè),由得:,則,即,設(shè),,則,,,,,解得:或;又與坐標(biāo)原點不重合,,,當(dāng)時,,直線恒過定點.故選:A.【點睛】思路點睛:本題考查直線與拋物線綜合應(yīng)用中的直線過定點問題的求解,求解此類問題的基本思路如下:①假設(shè)直線方程,與拋物線方程聯(lián)立,整理為關(guān)于或的一元二次方程的形式;②利用求得變量的取值范圍,得到韋達定理的形式;③利用韋達定理表示出已知中的等量關(guān)系,代入韋達定理可整理得到變量間的關(guān)系,從而化簡直線方程;④根據(jù)直線過定點的求解方法可求得結(jié)果.4、C【解析】利用偶函數(shù)的定義和全稱命題的否定分析判斷解答.【詳解】∵定義域為R的函數(shù)f(x)不是偶函數(shù),∴?x∈R,f(-x)=f(x)為假命題,∴?x0∈R,f(-x0)≠f(x0)為真命題.故選C【點睛】本題主要考查偶函數(shù)的定義和全稱命題的否定,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.5、B【解析】由已知條件及等差數(shù)列通項公式、前n項和公式求基本量,再根據(jù)等差數(shù)列前n項和的函數(shù)性質(zhì)判斷取最大時的值.【詳解】令公差為,則,解得,所以,當(dāng)時,取最大值.故選:B6、A【解析】求得拋物線的焦點從而求得,再結(jié)合題意求得,即可寫出橢圓方程.【詳解】因為拋物線的焦點坐標(biāo)為,故可得;又短軸長為2,故可得,即;故橢圓方程為:.故選:.7、C【解析】根據(jù)兩直線垂直的充要條件得到方程,解得即可;【詳解】解:因為,且,所以,解得;故選:C8、B【解析】直接利用空間向量基本定理求解即可【詳解】因為在平行六面體中,,,,所以,故選:B9、D【解析】對于①在方程中換為,換為可判斷;對于②分析曲線的圖形是兩個拋物線的部分組成的可判斷;對于③在第一象限內(nèi),分析橢圓的圖形與曲線圖形的位置關(guān)系可判斷.【詳解】在曲線的方程中,換為,換為,方程不變,故曲線關(guān)于坐標(biāo)原點對稱所以①正確,當(dāng)時,曲線的方程化為,此時當(dāng)時,曲線的方程化為,此時所以曲線圖形是兩個拋物線的部分組成的,不是橢圓,故②不正確.當(dāng),時,設(shè),設(shè),則,(當(dāng)且僅當(dāng)或時等號成立)所以在第一象限內(nèi),橢圓的圖形在曲線的上方.根據(jù)曲線和橢圓的的對稱性可得橢圓的圖形在曲線的外部(四個頂點在曲線上)所以曲線圍成區(qū)域的面積小于橢圓圍成區(qū)域的面積,故③正確.故選:D10、D【解析】根據(jù)題意,圓:的面積被直線平分,即直線經(jīng)過圓的圓心,由此求出兩圓的圓心和半徑,然后判斷兩個圓的位置關(guān)系即可【詳解】根據(jù)題意,圓:,即,其圓心為,半徑,圓:的面積被直線平分,即直線經(jīng)過圓的圓心,則有1?m+1=0,解可得m=2,即所以圓的圓心(1,?1),半徑為1,圓的標(biāo)準(zhǔn)方程是,圓心(?2,3),半徑為4,其圓心距,所以兩個圓外切,故選:D.11、C【解析】過作,連接,由于,故平面,所以所求直線與平面所成的角為,設(shè)棱長為,則,故,.點睛:本題主要考查空間立體幾何直線與平面的位置關(guān)系,考查直線與平面所成的角,考查線面垂直的證明方法和常見幾何體的結(jié)構(gòu)特征.由于題目所給幾何體為直三棱柱,故側(cè)棱和底面垂直,這是一個重要的隱含條件,通過作交線的垂線,即可得到高,由此作出二面角的平面角.12、C【解析】根據(jù)折線圖,求出甲乙中位數(shù)、平均數(shù)及方差、極差,即可判斷各選項的正誤.【詳解】由題圖,甲隊數(shù)據(jù)從小到大排序為,乙隊數(shù)據(jù)從小到大排序為,所以甲乙兩隊的平均數(shù)都為5,甲、乙進球中位數(shù)相同都為5,A、B錯誤;甲隊方差為,乙隊方差為,即,故乙隊球員進球水平比甲隊穩(wěn)定,C正確.甲隊極差為6,乙隊極差為4,故甲隊極差比乙隊大,D錯誤.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】直接利用等差數(shù)列前項和公式和等差數(shù)列的性質(zhì)求解即可.【詳解】由已知條件得,故答案為:.14、8【解析】根據(jù)橢圓定義判斷出軌跡,分析條件結(jié)合橢圓定義可知當(dāng)直線x=m過右焦點時,三角形ADE周長最大.【詳解】,到定點,的距離和等于常數(shù),點軌跡C為橢圓,且故其方程為,則為左焦點,因為直線與C交于D,E,則,不妨設(shè)D在軸上方,E在軸下方,設(shè)橢圓右焦點為A',連接DA',EA',因為DA'+EA'≥DE,所以DA+EA+DA'+EA'≥DA+EA+DE,即4a≥DA+EA+DE,所以△ADE的周長,當(dāng)時取得最大值8,故答案為:815、【解析】根據(jù)題意得到,進而得到,求得的值,即可求解.【詳解】因為為線段的中點,所以,所以,又因為,所以,所以故答案為:.16、【解析】分兩類:兩次都互相交換白球的概率和第一次甲交出黑球收到白球,且第二次甲交出白球收到黑球的概率求和可得答案.【詳解】分兩類:①兩次都互相交換白球的概率為;②第一次甲交出黑球收到白球,且第二次甲交出白球收到黑球的概率為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)可依次根據(jù)直線方程的點斜式、“兩直線平行,斜率相等”、“兩直線垂直,斜率相乘為-1”求直線l的方程;(2)利用垂徑定理即可求圓的弦長.【小問1詳解】選條件①:∵直線過點(3,5)及(-1,2),∴直線的斜率為,依題意,直線的方程為,即;選條件②:∵直線的斜率為,直線與直線平行,∴直線的斜率為,依題意,直線的方程為;即;選條件③:∵直線的斜率為,直線與直線垂直,∴直線的斜率為,依題意,直線的方程為,即;【小問2詳解】圓心為(2,3),半徑為2,圓心到直線的距離為∴18、(1)(2)證明見解析【解析】(1)根據(jù)周長為8,求得a,再根據(jù)離心率求解;(2)方法一:設(shè),,得到直線和直線的方程,聯(lián)立求得Q的橫坐標(biāo),根據(jù)在橢圓上,得到,然后代入Q的橫坐標(biāo)求解;方法二:設(shè)直線,的斜率分別為k,,點,,直線的方程為,與橢圓方程聯(lián)立,求得點P橫坐標(biāo),再由的直線方程聯(lián)立,得到P,Q的橫坐標(biāo)的關(guān)系求解.【小問1詳解】解:∵的周長為8,∴,即,∵離心率,∴,,∴橢圓C的標(biāo)準(zhǔn)方程為【小問2詳解】方法一:設(shè),則直線斜率,∵,∴直線斜率,∴直線的方程為:,同理直線的方程為:,聯(lián)立上面兩直線方程,消去y,得,∵在橢圓上,∴,即,∴,∴所以與的面積之比為定值4方法二:設(shè)直線,的斜率分別為k,,點,,則直線的方程為,∵,∴直線的方程為,將代入,得,∵P是橢圓上異于點,的點,∴,又∵,即,∴,即,由,得直線的方程為,聯(lián)立得,∴所以與的面積之比為定值419、(1)(2)【解析】(1)利用等比數(shù)列的定義以及等差數(shù)列的性質(zhì),列出方程即可得到答案;(2)先求出的通項,再利用的單調(diào)性即可得到的最小值,從而求得的取值范圍【小問1詳解】依題意,,,所以,設(shè)等差數(shù)列的公差為,則,解得,所以【小問2詳解】,則數(shù)列是遞增數(shù)列,,所以,若,則.20、(1);(2)【解析】(1)由題意可設(shè)拋物線的方程為y2=2px(p>0),運用拋物線的定義,可得23,解得p=2,進而得到拋物線的方程;(2)由題意,直線AB方程為y=x﹣1,與y2=4x消去y得:x2﹣6x+1=0.再用一元二次方程根與系數(shù)的關(guān)系和弦長公式,算出|AB|;利用點到直線的距離公式算出點O到直線AB的距離,即可求出△AOB的面積【詳解】(1)拋物線C的頂點在原點,焦點在x軸上,且過一點P(2,m),可設(shè)拋物線的方程為y2=2px(p>0),P(2,m)到焦點的距離為3,即有P到準(zhǔn)線的距離為6,即23,解得p=2,即拋物線的標(biāo)準(zhǔn)方程為y2=4x;(2)聯(lián)立方程化簡,得x2﹣6x+1=0設(shè)交點為A(x1,y1),B(x2,y2)∴x1+x2=6,x1x2=1可得|AB||x1﹣x2|=8點O到直線l的距離d,所以△AOB的面積為S|AB|?d82【點睛】本題考查拋物線的方程的求法及拋物線定義的應(yīng)用,考查待定系數(shù)法的運用,考查求焦點弦AB與原點構(gòu)成的△AOB面積,屬于中檔題21、(1)(2)【解析】(1)根據(jù)題意利用等差數(shù)列的性質(zhì)列出方程,即可解得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論