版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆青海省大通回族土族自治縣第一中學(xué)數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.命題任意圓的內(nèi)接四邊形是矩形,則為()A.每一個(gè)圓的內(nèi)接四邊形是矩形B.有的圓的內(nèi)接四邊形不是矩形C.所有圓的內(nèi)接四邊形不是矩形D.存在一個(gè)圓的內(nèi)接四邊形是矩形2.直線:和圓的位置關(guān)系是()A.相離 B.相切或相交C.相交 D.相切3.下列數(shù)列是遞增數(shù)列的是()A. B.C. D.4.邊長(zhǎng)為的正方形沿對(duì)角線折成直二面角,、分別為、的中點(diǎn),是正方形的中心,則的大小為()A. B.C. D.5.?dāng)?shù)列滿足,,,則數(shù)列的前8項(xiàng)和為()A.25 B.26C.27 D.286.等比數(shù)列的前項(xiàng)和為,前項(xiàng)積為,,當(dāng)最小時(shí),的值為()A.3 B.4C.5 D.67.若函數(shù)在定義域上單調(diào)遞增,則實(shí)數(shù)的取值范圍為()A. B.C. D.8.拋物線上的一點(diǎn)到其焦點(diǎn)的距離等于()A. B.C. D.9.若數(shù)列的前項(xiàng)和,則此數(shù)列是()A.等差數(shù)列 B.等比數(shù)列C.等差數(shù)列或等比數(shù)列 D.以上說法均不對(duì)10.已知點(diǎn)分別為圓與圓的任意一點(diǎn),則的取值范圍是()A. B.C. D.11.若方程表示圓,則實(shí)數(shù)m的取值范圍為()A B.C. D.12.若方程表示雙曲線,則此雙曲線的虛軸長(zhǎng)等于()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)為曲線上一點(diǎn),,,若,則__________14.已知橢圓和雙曲線有相同的焦點(diǎn)和,設(shè)橢圓和雙曲線的離心率分別為,,為兩曲線的一個(gè)公共點(diǎn),且(為坐標(biāo)原點(diǎn)).若,則的取值范圍是______15.下列說法中,正確的有_________(填序號(hào)).①“”是“方程表示橢圓”的必要而不充分條件;②若:,則:;③“,”的否定是“,”;④若命題“”為假命題,則命題一定是假命題;⑤是直線:和直線:垂直的充要條件.16.若和或都是假命題,則的范圍是__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知p:關(guān)于x的方程至多有一個(gè)實(shí)數(shù)解,.(1)若命題p為真命題,求實(shí)數(shù)a的取值范圍;(2)若p是q的充分不必要條件,求實(shí)數(shù)m的取值范圍.18.(12分)已知圓,點(diǎn)(1)若點(diǎn)在圓外部,求實(shí)數(shù)的取值范圍;(2)當(dāng)時(shí),過點(diǎn)的直線交圓于,兩點(diǎn),求面積的最大值及此時(shí)直線l的斜率19.(12分)在平面直角坐標(biāo)系中,過點(diǎn)且傾斜角為的直線與曲線(為參數(shù))交于兩點(diǎn).(1)將曲線的參數(shù)方程轉(zhuǎn)化為普通方程;(2)求的長(zhǎng).20.(12分)如圖,在四棱錐中,底面為菱形,,底面,,是的中點(diǎn).(1)求證:平面;(2)求證:平面平面;(3)設(shè)點(diǎn)是平面上任意一點(diǎn),直接寫出線段長(zhǎng)度最小值.(不需證明)21.(12分)已知拋物線的方程為,點(diǎn),過點(diǎn)的直線交拋物線于,兩點(diǎn)(1)是否為定值?若是,求出該定值;若不是,說明理由;(2)若點(diǎn)是直線上的動(dòng)點(diǎn),且,求面積的最小值22.(10分)在△ABC中,(1)求B的大??;(2)求cosA+cosC的最大值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】全稱命題的否定特稱命題,任意改為存在,把結(jié)論否定.【詳解】全稱量詞命題的否定是特稱命題,需要將全稱量詞換為存在量詞,答案A,C不符合題意,同時(shí)對(duì)結(jié)論進(jìn)行否定,所以:有的圓的內(nèi)接四邊形不是矩形,故選:B.2、C【解析】直線l:y﹣1=k(x﹣1)恒過點(diǎn)(1,1),且點(diǎn)(1,1)在圓上,直線的斜率存在,故可知直線l:y﹣1=k(x﹣1)和圓C:x2+y2﹣2y=0的關(guān)系【詳解】圓C:x2+y2﹣2y=0可化為x2+(y﹣1)2=1∴圓心為(0,1),半徑為1∵直線l:y﹣1=k(x﹣1)恒過點(diǎn)(1,1),且點(diǎn)(1,1)在圓上且直線的斜率存在∴直線l:y﹣1=k(x﹣1)和圓C:x2+y2﹣2y=0的關(guān)系是相交,故選C【點(diǎn)睛】本題考查的重點(diǎn)是直線與圓的位置關(guān)系,解題的關(guān)鍵是確定直線恒過定點(diǎn),此題易誤選B,忽視直線的斜率存在3、C【解析】分別判斷的符號(hào),從而可得出答案.【詳解】解:對(duì)于A,,則,所以數(shù)列為遞減數(shù)列,故A不符合題意;對(duì)于B,,則,所以數(shù)列為遞減數(shù)列,故B不符合題意;對(duì)于C,,則,所以數(shù)列為遞增數(shù)列,故C符合題意;對(duì)于D,,則,所以數(shù)列遞減數(shù)列,故D不符合題意.故選:C.4、B【解析】建立空間直角坐標(biāo)系,以向量法去求的大小即可解決.【詳解】由題意可得平面,,則兩兩垂直以O(shè)為原點(diǎn),分別以O(shè)B、OA、OC所在直線為x、y、z軸建立空間直角坐標(biāo)系則,,,,又,則故選:B5、C【解析】根據(jù)通項(xiàng)公式及求出,從而求出前8項(xiàng)和.【詳解】當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,則數(shù)列的前8項(xiàng)和為.故選:C6、B【解析】根據(jù)等比數(shù)列相關(guān)計(jì)算得到,,進(jìn)而求出與,代入后得到,利用指數(shù)函數(shù)和二次函數(shù)單調(diào)性得到當(dāng)時(shí),取得最小值.【詳解】顯然,由題意得:,,兩式相除得:,將代入,解得:,所以,所以,,所以,其中單調(diào)遞增,所以當(dāng)時(shí),取得最小值.故選:B7、D【解析】函數(shù)在定義域上單調(diào)遞增等價(jià)于在上恒成立,即在上恒成立,然后易得,最后求出范圍即可.【詳解】函數(shù)的定義域?yàn)?,,在定義域上單調(diào)遞增等價(jià)于在上恒成立,即在上恒成立,即在上恒成立,分離參數(shù)得,所以,即.【點(diǎn)睛】方法點(diǎn)睛:已知函數(shù)的單調(diào)性求參數(shù)的取值范圍的通解:若在區(qū)間上單調(diào)遞增,則在區(qū)間上恒成立;若在區(qū)間上單調(diào)遞減,則在區(qū)間上恒成立;然后再利用分離參數(shù)求得參數(shù)的取值范圍即可.8、C【解析】由點(diǎn)的坐標(biāo)求得參數(shù),再由焦半徑公式得結(jié)論【詳解】由題意,解得,所以,故選:C9、D【解析】利用數(shù)列通項(xiàng)與前n項(xiàng)和的關(guān)系和等差數(shù)列及等比數(shù)列的定義判斷.【詳解】當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,所以是等差數(shù)列;當(dāng)時(shí),為非等差數(shù)列,非等比數(shù)列’當(dāng)時(shí),,所以是等比數(shù)列,故選:D10、B【解析】先判定兩圓的位置關(guān)系為相離的關(guān)系,然后利用幾何方法得到的取值范圍.【詳解】的圓心為,半徑,的圓心為,半徑,圓心距,∴兩圓相離,∴,故選:B.11、D【解析】根據(jù),解不等式即可求解.【詳解】由方程表示圓,則,解得.所以實(shí)數(shù)m的取值范圍為.故選:D12、B【解析】根據(jù)雙曲線標(biāo)準(zhǔn)方程直接判斷.【詳解】方程即為,由方程表示雙曲線,可得,所以,,所以虛軸長(zhǎng)為,故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】化簡(jiǎn)曲線方程,得到雙曲線的一支,結(jié)合雙曲線定義求出結(jié)果【詳解】由,得,即,故為雙曲線右支上一點(diǎn),且分別為該雙曲線的左、右焦點(diǎn),則,.【點(diǎn)睛】本題考查了雙曲線的定義,解題時(shí)要先化簡(jiǎn)曲線方程,然后再結(jié)合雙曲線定義求出結(jié)果,較為基礎(chǔ)14、【解析】設(shè)出半焦距c,用表示出橢圓的長(zhǎng)半軸長(zhǎng)、雙曲線的實(shí)半軸長(zhǎng),由可得為直角三角形,由此建立關(guān)系即可計(jì)算作答,【詳解】設(shè)橢圓的長(zhǎng)半軸長(zhǎng)為,雙曲線的實(shí)半軸長(zhǎng)為,它們的半焦距為c,于是得,,由橢圓及雙曲線的對(duì)稱性知,不妨令焦點(diǎn)和在x軸上,點(diǎn)P在y軸右側(cè),由橢圓及雙曲線定義得:,解得,,因,即,而O是線段的中點(diǎn),因此有,則有,即,整理得:,從而有,即有,又,則有,即,解得,所以的取值范圍是.故答案為:【點(diǎn)睛】方法點(diǎn)睛:求解橢圓或雙曲線的離心率的三種方法:①定義法:通過已知條件列出方程組,求得值,根據(jù)離心率的定義求解離心率;②齊次式法:由已知條件得出關(guān)于的二元齊次方程,然后轉(zhuǎn)化為關(guān)于的一元二次方程求解;③特殊值法:通過取特殊值或特殊位置,求出離心率.15、①【解析】根據(jù)橢圓方程的結(jié)構(gòu)特征可判斷①;注意到分式不等式分母不等于0可判斷②;由全稱命題的否定可判斷③;根據(jù)復(fù)合命題的真假可判斷④;由直線垂直的充要條件可判斷⑤.【詳解】①中,當(dāng)時(shí),方程為,表示圓,若方程表示橢圓,則,解得或,故①正確;②中,,故為:,而,故②不正確;③中,“,”的否定應(yīng)為“,”,故③不正確;④中,若命題“”為假命題,有可能為真或?yàn)榧?,故④不正確;⑤中,,解得或,故是直線:和直線:垂直的充分不必要條件,故⑤不正確.故答案為:①16、【解析】先由和或都是假命題,求出x的范圍,取交集即可.【詳解】若為假命題,則有或若或是假命題,則所以的范圍是即的范圍是胡答案:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)命題p為真命題,可得,解之即可得解;(2)若p是q的充分不必要條件,則,列出不等式組,解之即可得出答案.【小問1詳解】解:命題p:關(guān)于x的方程至多有一個(gè)實(shí)數(shù)解,∴,解得,∴實(shí)數(shù)a的取值范圍是;【小問2詳解】解:命題,∵p是q的充分不必要條件,∴,∴,且兩式等號(hào)不能同時(shí)取得,解得,∴實(shí)數(shù)m的取值范圍是.18、(1);(2)最大值為2,【解析】(1)根據(jù)題意,將圓的方程變形為標(biāo)準(zhǔn)方程,由點(diǎn)與圓的位置關(guān)系可得,求解不等式組得答案;(2)當(dāng)時(shí),圓的方程為,求出圓心與半徑,設(shè),則,分析可得面積的最大值,結(jié)合直線與圓的位置關(guān)系可得圓心到直線的距離,設(shè)直線的方程為,即,由點(diǎn)到直線的距離公式列式求得的值【詳解】解:(1)根據(jù)題意,圓,即,若在圓外,則有,解得:,即的取值范圍為;(2)當(dāng)時(shí),圓的方程為,圓心為,半徑,設(shè),則,當(dāng)時(shí),面積取得最大值,且其最大值為2,此時(shí)為等腰直角三角形,圓心到直線的距離,設(shè)直線的方程為,即,則有,解得,即直線的斜率【點(diǎn)睛】易錯(cuò)點(diǎn)點(diǎn)睛:本題第一問解答過程中,容易忽視二元二次方程表示圓的條件,導(dǎo)致出錯(cuò),解題的時(shí)候要考慮周全,考查運(yùn)算求解能力,是中檔題.19、(1);(2).【解析】(1)利用公式直接將橢圓的參數(shù)方程轉(zhuǎn)化為普通方程即可.(2)首先求出直線的參數(shù)方程,代入橢圓的普通方程得到,再利用直線參數(shù)方程的幾何意義求弦長(zhǎng)即可.【詳解】(1)因?yàn)榍€(為參數(shù)),所以曲線的普通方程為:.(2)由題知:直線的參數(shù)方程為(為參數(shù)),將直線的參數(shù)方程代入,得.,.所以.20、(1)證明見解析(2)證明見解析(3)【解析】(1)設(shè),連結(jié),根據(jù)中位線定理即可證,再根據(jù)線面平行的判定定理,即可證明結(jié)果;(2)由菱形的性質(zhì)可知,可證,又底面,可得,再根據(jù)面面垂直的判定定理,即可證明結(jié)果;(3)根據(jù)等體積法,即,經(jīng)過計(jì)算直接寫出結(jié)果即可.【小問1詳解】證明:設(shè),連結(jié).因?yàn)榈酌鏋榱庑?,所以為的中點(diǎn),又因?yàn)镋是PC的中點(diǎn),所以.又因?yàn)槠矫?,平面,所以平?【小問2詳解】證明:因?yàn)榈酌鏋榱庑危?因?yàn)榈酌?,所?又因?yàn)?,所以平?又因?yàn)槠矫?,所以平面平?【小問3詳解】解:線段長(zhǎng)度的最小值為.21、(1)是,;(2)【解析】(1)由題意設(shè)出所在直線方程,與拋物線方程聯(lián)立,化為關(guān)于的一元二次方程,由根與系數(shù)的關(guān)系即可求得為定值;(2)當(dāng)?shù)男甭蕿?時(shí),求得三角形的面積為;當(dāng)?shù)男甭什粸?時(shí),由弦長(zhǎng)公式求解,再由點(diǎn)到直線的距離公式求到的距離,代入三角形面積公式,利用函數(shù)單調(diào)性可得三角形的面積大于,由此可得面
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030全球微注塑材料行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 2024年全國(guó)營(yíng)養(yǎng)師技能大賽福建選拔賽考試題庫(附答案)
- 2025-2030全球軍事應(yīng)用防護(hù)涂層行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 2025-2030全球駐極體過濾介質(zhì)行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 2025-2030全球植入性人工器官行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 二零二五年度大棚農(nóng)業(yè)保險(xiǎn)合作合同2篇
- 2025年沙地土地整治與生態(tài)恢復(fù)承包合同4篇
- 2025年度智能物流承包裝卸平臺(tái)合同4篇
- 二零二五年度抽沙船租賃與海岸修復(fù)合同4篇
- 2025年度個(gè)人二手房交易買賣合同書標(biāo)準(zhǔn)版2篇
- 2024年湖南高速鐵路職業(yè)技術(shù)學(xué)院高職單招數(shù)學(xué)歷年參考題庫含答案解析
- 國(guó)旗班指揮刀訓(xùn)練動(dòng)作要領(lǐng)
- 2024年國(guó)家工作人員學(xué)法用法考試題庫及參考答案
- 國(guó)家公務(wù)員考試(面試)試題及解答參考(2024年)
- 《阻燃材料與技術(shù)》課件 第6講 阻燃纖維及織物
- 2021-2022學(xué)年遼寧省重點(diǎn)高中協(xié)作校高一上學(xué)期期末語文試題
- 同等學(xué)力英語申碩考試詞匯(第六版大綱)電子版
- 人教版五年級(jí)上冊(cè)遞等式計(jì)算100道及答案
- 墓地個(gè)人協(xié)議合同模板
- 2024年部編版初中語文各年級(jí)教師用書七年級(jí)(上冊(cè))
- 2024年新課標(biāo)全國(guó)Ⅰ卷語文高考真題試卷(含答案)
評(píng)論
0/150
提交評(píng)論