版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆山東省棗莊三中高二數(shù)學(xué)第一學(xué)期期末預(yù)測(cè)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線的漸近線方程為,則該雙曲線的離心率等于()A. B.C.2 D.42.設(shè)是空間一定點(diǎn),為空間內(nèi)任一非零向量,滿(mǎn)足條件的點(diǎn)構(gòu)成的圖形是()A.圓 B.直線C.平面 D.線段3.直線的傾斜角為()A.30° B.60°C.90° D.120°4.給出命題:若函數(shù)是冪函數(shù),則函數(shù)的圖象不過(guò)第四象限.在它的逆命題、否命題、逆否命題三個(gè)命題中,真命題的個(gè)數(shù)是()A.3 B.2C.1 D.05.已知命題:,;命題:,使,若“”為假命題,則實(shí)數(shù)的取值范圍是()A. B.C. D.6.在平面內(nèi),A,B是兩個(gè)定點(diǎn),C是動(dòng)點(diǎn),若,則點(diǎn)C的軌跡為()A.圓 B.橢圓C.拋物線 D.直線7.已知拋物線,則拋物線的焦點(diǎn)到其準(zhǔn)線的距離為()A. B.C. D.8.下列說(shuō)法中正確的是()A.命題“若,則”的否命題是真命題;B.若為真命題,則為真命題;C.“”是“”的充分條件;D.若命題:“,”,則:“,”9.某制藥廠為了檢驗(yàn)?zāi)撤N疫苗預(yù)防的作用,把名使用疫苗的人與另外名未使用疫苗的人一年中的記錄作比較,提出假設(shè):“這種疫苗不能起到預(yù)防的作用”,利用列聯(lián)表計(jì)算得,經(jīng)查對(duì)臨界值表知.則下列結(jié)論中,正確的結(jié)論是()A.若某人未使用該疫苗,則他在一年中有的可能性生病B.這種疫苗預(yù)防的有效率為C.在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為“這種疫苗能起到預(yù)防的作用”D.有的把握認(rèn)為這種疫苗不能起到預(yù)防生病的作用10.已知函數(shù)只有一個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是()A B.C. D.11.已知,且直線始終平分圓的周長(zhǎng),則的最小值是()A.2 B.C.6 D.1612.我國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》是明代數(shù)學(xué)家程大位(1533-1606年)所著.該書(shū)中有如下問(wèn)題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問(wèn)尖頭幾盞燈?”.其意思是:“一座7層塔共掛了381盞燈,且下一層燈數(shù)是上一層的2倍,則可得塔的最頂層共有燈幾盞?”.若改為“求塔的最底層幾盞燈?”,則最底層有()盞.A.192 B.128C.3 D.1二、填空題:本題共4小題,每小題5分,共20分。13.已知圓,圓與軸相切,與圓外切,且圓心在直線上,則圓的標(biāo)準(zhǔn)方程為_(kāi)_______14.某n重伯努利試驗(yàn)中,事件A發(fā)生的概率為p,事件A發(fā)生的次數(shù)記為X,,,則______15.設(shè),若不等式在上恒成立,則的取值范圍是______.16.已知雙曲線的右焦點(diǎn)為F,以F為圓心,以a為半徑的圓與雙曲線C的一條漸近線交于A,B兩點(diǎn).若(O為坐標(biāo)原點(diǎn)),則雙曲線C的離心率為_(kāi)__________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù).(1)當(dāng)時(shí),求的極值;(2)當(dāng)時(shí),,求a的取值范圍.18.(12分)已知為各項(xiàng)均為正數(shù)的等比數(shù)列,且,(1)求數(shù)列的通項(xiàng)公式;(2)令,求數(shù)列前n項(xiàng)和19.(12分)已知圓C的圓心在直線上,圓心到x軸的距離為2,且截y軸所得弦長(zhǎng)為(1)求圓C的方程;(2)若圓C上至少有三個(gè)不同的點(diǎn)到直線的距離為,求實(shí)數(shù)k的取值范圍20.(12分)如圖,在四棱錐中,底面為直角梯形,底面分別為的中點(diǎn),(1)求證:平面平面;(2)求二面角的大小21.(12分)已知p:關(guān)于x的方程至多有一個(gè)實(shí)數(shù)解,.(1)若命題p為真命題,求實(shí)數(shù)a的取值范圍;(2)若p是q的充分不必要條件,求實(shí)數(shù)m的取值范圍.22.(10分)某公司有員工人,對(duì)他們進(jìn)行年齡和學(xué)歷情況調(diào)查,其結(jié)果如下:現(xiàn)從這名員工中隨機(jī)抽取一人,設(shè)“抽取的人具有本科學(xué)歷”,“抽取的人年齡在歲以下”,試求:(1);(2);(3).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】由雙曲線的漸近線方程,可得,再由的關(guān)系和離心率公式,計(jì)算即可得到所求值【詳解】解:雙曲線的漸近線方程為,由題意可得即,可得由可得,故選:A.2、C【解析】根據(jù)法向量的定義可判斷出點(diǎn)所構(gòu)成的圖形.【詳解】是空間一定點(diǎn),為空間內(nèi)任一非零向量,滿(mǎn)足條件,所以,構(gòu)成的圖形是經(jīng)過(guò)點(diǎn),且以為法向量的平面.故選:C.【點(diǎn)睛】本題考查空間中動(dòng)點(diǎn)的軌跡,考查了法向量定義的理解,屬于基礎(chǔ)題.3、B【解析】根據(jù)給定方程求出直線斜率,再利用斜率的定義列式計(jì)算得解.【詳解】直線的斜率,設(shè)其傾斜角為,顯然,則有,解得,直線的傾斜角為.故選:B4、C【解析】若函數(shù)是冪函數(shù),則函數(shù)的圖象不過(guò)第四象限,原命題是真命題,則其逆否命題也是真命題;其逆命題為:若函數(shù)的圖象不過(guò)第四象限,則函數(shù)是冪函數(shù)是假命題,所以原命題的否命題也是假命題.故它的逆命題、否命題、逆否命題三個(gè)命題中,真命題有一個(gè).選C5、D【解析】根據(jù)題意,判斷命題和的真假性,結(jié)合判別式與二次函數(shù)恒成立問(wèn)題,即可求解.【詳解】根據(jù)題意,由為假命題可得“”為真命題,即p、q都為真命題,故,解得故選:D6、A【解析】首先建立平面直角坐標(biāo)系,然后結(jié)合數(shù)量積定義求解其軌跡方程即可.【詳解】設(shè),以AB中點(diǎn)為坐標(biāo)原點(diǎn)建立如圖所示的平面直角坐標(biāo)系,則:,設(shè),可得:,從而:,結(jié)合題意可得:,整理可得:,即點(diǎn)C的軌跡是以AB中點(diǎn)為圓心,為半徑的圓.故選:A.【點(diǎn)睛】本題主要考查平面向量及其數(shù)量積的坐標(biāo)運(yùn)算,軌跡方程的求解等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.7、D【解析】將拋物線方程化為標(biāo)準(zhǔn)方程,由此確定的值即可.【詳解】由可得拋物線標(biāo)準(zhǔn)方程為:,,拋物線的焦點(diǎn)到其準(zhǔn)線的距離為.故選:D.8、C【解析】A.寫(xiě)出原命題的否命題,即可判斷其正誤;B.根據(jù)為真命題可知的p,q真假情況,由此判斷的真假;C.看命題“”能否推出“”,即可判斷;D.根據(jù)含有一個(gè)量詞的命題的否定的要求,即可判斷該命題的正誤.【詳解】A.命題“若x=y,則sinx=siny”,其否命題為若“,則”為假命題,因此A不正確;B.命題“”為真命題,則p,q中至少有一個(gè)為真命題,當(dāng)二者為一真一假時(shí),為假命題,故B不正確C.命題“若,則”為真命題,故C正確;D.命題:“,”,為特稱(chēng)命題,其命題的否定:“,”,故D錯(cuò)誤,故選:C9、C【解析】根據(jù)的值與臨界值的大小關(guān)系進(jìn)行判斷.【詳解】∵,,∴在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為“這種疫苗能起到預(yù)防的作用”,C對(duì),由已知數(shù)據(jù)不能確定若某人未使用該疫苗,則他在一年中有的可能性生病,A錯(cuò),由已知數(shù)據(jù)不能判斷這種疫苗預(yù)防的有效率為,B錯(cuò),由已知數(shù)據(jù)沒(méi)有的把握認(rèn)為這種疫苗不能起到預(yù)防生病的作用,D錯(cuò),故選:C.10、B【解析】將題目轉(zhuǎn)化為函數(shù)的圖像與的圖像只有一個(gè)交點(diǎn),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值,作出圖像,利用數(shù)形結(jié)合求出的取值范圍.【詳解】由函數(shù)只有一個(gè)零點(diǎn),等價(jià)于函數(shù)的圖像與的圖像只有一個(gè)交點(diǎn),,求導(dǎo),令,得當(dāng)時(shí),,函數(shù)在上單調(diào)遞減;當(dāng)時(shí),,函數(shù)在上單調(diào)遞增;當(dāng)時(shí),,函數(shù)在上單調(diào)遞減;故當(dāng)時(shí),函數(shù)取得極小值;當(dāng)時(shí),函數(shù)取得極大值;作出函數(shù)圖像,如圖所示,由圖可知,實(shí)數(shù)的取值范圍是故選:B【點(diǎn)睛】方法點(diǎn)睛:已知函數(shù)有零點(diǎn)(方程有根)求參數(shù)值(取值范圍)常用的方法:(1)直接法:直接求解方程得到方程的根,再通過(guò)解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域問(wèn)題加以解決;(3)數(shù)形結(jié)合法:先對(duì)解析式變形,進(jìn)而構(gòu)造兩個(gè)函數(shù),然后在同一平面直角坐標(biāo)系中畫(huà)出函數(shù)的圖象,利用數(shù)形結(jié)合的方法求解.11、B【解析】由已知直線過(guò)圓心得,再用均值不等式即可.【詳解】由已知直線過(guò)圓心得:,,當(dāng)且僅當(dāng)時(shí)取等.故選:B.12、A【解析】根據(jù)題意,轉(zhuǎn)化為等比數(shù)列,利用通項(xiàng)公式和求和公式進(jìn)行求解.【詳解】設(shè)這個(gè)塔頂層有盞燈,則問(wèn)題等價(jià)于一個(gè)首項(xiàng)為,公比為2的等比數(shù)列的前7項(xiàng)和為381,所以,解得,所以這個(gè)塔的最底層有盞燈.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)題干求得圓的圓心及半徑,再利用圓與軸相切,與圓外切,且圓心在直線上確定圓的圓心及半徑.【詳解】圓的標(biāo)準(zhǔn)方程為,所以圓心,半徑為由圓心在直線上,可設(shè)因?yàn)榕c軸相切,與圓外切,于是圓的半徑為,從而,解得因此,圓的標(biāo)準(zhǔn)方程為故答案為:【點(diǎn)睛】判斷兩圓的位置關(guān)系常用幾何法,即用兩圓圓心距與兩圓半徑和與差之間的關(guān)系,一般不采用代數(shù)法.兩圓相切注意討論內(nèi)切外切兩種情況.14、##0.2【解析】根據(jù)二項(xiàng)分布的均值和方差的計(jì)算公式可求解【詳解】依題意得X服從二項(xiàng)分布,則,解得,故答案為:15、【解析】構(gòu)造,利用導(dǎo)數(shù)求其最大值,結(jié)合已知不等式恒成立,即可確定的范圍.【詳解】令,則且,若得:;若得:;所以在上遞增,在上遞減,故,要使在上恒成立,即.故答案為:.16、【解析】過(guò)F作,利用點(diǎn)到直線距離可求出,再根據(jù)勾股定理可得,,由可得,即可建立關(guān)系求解.【詳解】如圖,過(guò)F作,則E是AB中點(diǎn),設(shè)漸近線為,則,則在直角三角形OEF中,,在直角三角形BEF中,,,則,即,即,則,即,.故答案為:.【點(diǎn)睛】本題考查雙曲線離心率的求解,解題的關(guān)鍵是分別表示出,,由建立關(guān)系.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)極大值,沒(méi)有極小值(2)【解析】(1)把代入,然后對(duì)函數(shù)求導(dǎo),結(jié)合導(dǎo)數(shù)可求函數(shù)單調(diào)區(qū)間,即可得解;(2)構(gòu)造函數(shù),將不等式的恒成立轉(zhuǎn)化為函數(shù)的最值問(wèn)題,結(jié)合導(dǎo)數(shù)與單調(diào)性及函數(shù)的性質(zhì)對(duì)進(jìn)行分類(lèi)討論,其中當(dāng)和時(shí)易判斷函數(shù)的單調(diào)性以及最小值,而當(dāng)時(shí),的最小值與0進(jìn)一步判斷【小問(wèn)1詳解】當(dāng)時(shí),的定義域?yàn)椋?當(dāng)時(shí),,當(dāng)時(shí),,所以在上為增函數(shù),在上為減函數(shù).故有極大值,沒(méi)有極小值.【小問(wèn)2詳解】當(dāng)時(shí),恒成立等價(jià)于對(duì)于任意恒成立.令,則.若,則,所以在上單調(diào)遞減,所以,符合題意.若,所以在上單調(diào)遞減,,符合題意.若,當(dāng)時(shí),,當(dāng)時(shí),,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,不合題意.綜上可知,a的取值范圍為.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題考查了不等式恒成立問(wèn)題,其關(guān)鍵是構(gòu)造函數(shù),通過(guò)討論參數(shù)在不同取值范圍時(shí)函數(shù)的單調(diào)性,求出函數(shù)的最值,解出參數(shù)的范圍.必要時(shí)二次求導(dǎo).18、(1)(2)【解析】(1)利用基本量法,求出首項(xiàng)和公比,即可求解.(2)利用錯(cuò)位相減法,即可求解.【小問(wèn)1詳解】設(shè)等比數(shù)列公比為【小問(wèn)2詳解】19、(1)或;(2).【解析】(1)設(shè)圓心為,由題意及圓的弦長(zhǎng)公式即可列方程組,解方程組即可;(2)由題意可將問(wèn)題轉(zhuǎn)化為圓心到直線l:的距離,解不等式即可.【詳解】解:(1)設(shè)圓心為,半徑為r,根據(jù)題意得,解得,所以圓C的方程為或(2)由(1)知圓C的圓心為或,半徑為,由圓C上至少有三個(gè)不同的點(diǎn)到直線l:的距離為,可知圓心到直線l:的距離即,所以,解得所以直線l斜率的取值范圍為20、(1)證明見(jiàn)解析(2)【解析】(1)依題意可得平行四邊形是矩形,即可得到,再由及面面垂直的性質(zhì)定理得到平面,從而得到,即可得到平面,從而得證;(2)建立空間直角坐標(biāo)系,利用空間向量法求出二面角的余弦值,即可得解;【小問(wèn)1詳解】證明:因?yàn)闉榈闹悬c(diǎn),,所以,又,所以四邊形為平行四邊形,因?yàn)?,所以平行四邊形是矩形,所以,因?yàn)?,所以,又因?yàn)槠矫嫫矫?,平面平面面,所以平面,因?yàn)槊?,所以,又因?yàn)?,平面,所以平面,因?yàn)槠矫?,所以平面平面;【小?wèn)2詳解】解:由(1)可得:兩兩垂直,如圖,分別以所在的直線為軸建立空間直角坐標(biāo)系,則則,設(shè)平面的一個(gè)法向量,由則,令,則,所以,設(shè)平面的一個(gè)法向量,所以,根據(jù)圖像可知二面角為銳二面角,所以二面角的大小為;21、(1)(2)【解析】(1)根據(jù)命題p為真命題,可得,解之即可得解;(2)若p是q的充分不必要條件,則,列出不等式組,解之即可得出答案
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024國(guó)際技術(shù)轉(zhuǎn)讓合同(中英文對(duì)照)
- 醫(yī)院醫(yī)療核心制度法律法規(guī)練習(xí)測(cè)試題附答案
- 分類(lèi)標(biāo)準(zhǔn)專(zhuān)項(xiàng)考試(監(jiān)理)專(zhuān)項(xiàng)測(cè)試卷
- 小學(xué)跨學(xué)科教學(xué)的實(shí)踐挑戰(zhàn)與解決方案
- 2024家政服務(wù)合同的范本
- 項(xiàng)目部關(guān)鍵崗位能力驗(yàn)證
- 職業(yè)衛(wèi)生知識(shí)
- 2024年高強(qiáng)鋁合金材料項(xiàng)目發(fā)展計(jì)劃
- 安置房項(xiàng)目申請(qǐng)報(bào)告
- 新高考語(yǔ)文一輪復(fù)習(xí)古詩(shī)文默寫(xiě)+閱讀闖關(guān)練習(xí)第20篇 《登泰山記》(解析版)
- 樂(lè)理試題(音程-三和弦)
- 三資系統(tǒng)操作手冊(cè)
- 綿陽(yáng)市物業(yè)服務(wù)收費(fèi)管理實(shí)施細(xì)則
- 危險(xiǎn)化學(xué)品事故應(yīng)急處置流程圖
- 微信公眾賬號(hào)授權(quán)書(shū)
- 鈑金折彎K因子計(jì)算
- 生石灰(氧化鈣)MSDS
- 中高層管理干部能力提升(劉學(xué)元)ppt課件
- 公司兼職銷(xiāo)售人員管理制度.docx
- 夾套管施工方案最終
- 初中音樂(lè)-對(duì)花-課件-(2)PPT課件
評(píng)論
0/150
提交評(píng)論