




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
北京市順義區(qū)2023年數學高二上期末統(tǒng)考模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.過點且平行于直線的直線方程為()A. B.C. D.2.如圖是拋物線形拱橋,當水面在n時,拱頂離水面2米,水面寬4米.水位下降1米后,水面寬為()A. B.C. D.3.已知中,內角所對的邊分別,若,,,則()A. B.C. D.4.若是函數的一個極值點,則的極大值為()A. B.C. D.5.若函數有兩個不同的極值點,則實數的取值范圍是()A. B.C. D.6.已知圓,圓,M,N分別是圓上的動點,P為x軸上的動點,則以的最小值為()A B.C. D.7.在等差數列中,,則()A.9 B.6C.3 D.18.已知點的坐標為(5,2),F(xiàn)為拋物線的焦點,若點在拋物線上移動,當取得最小值時,則點的坐標是A.(1,) B.C. D.9.下列命題中,正確的是()A.若a>b,c>d,則ac>bd B.若ac>bc,則a<bC.若a>b,c>d,則a﹣c>b﹣d D.若,則a<b10.設點關于坐標原點的對稱點是B,則等于()A.4 B.C. D.211.已知F1(-5,0),F(xiàn)2(5,0),動點P滿足|PF1|-|PF2|=2a,當a為3和5時,點P的軌跡分別為()A.雙曲線和一條直線 B.雙曲線和一條射線C.雙曲線的一支和一條直線 D.雙曲線的一支和一條射線12.已知拋物線,過其焦點且斜率為1的直線交拋物線于A,B兩點,若線段AB的中點的橫坐標為3,則該拋物線的準線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.一條光線從點射出,經x軸反射,其反射光線所在直線與圓相切,則反射光線所在的直線方程為____.14.定義點到曲線的距離為該點與曲線上所有點之間距離的最小值,則點到曲線距離為___________.15.已知雙曲線過點,且漸近線方程為,則該雙曲線的標準方程為____________________.16.設空間向量,且,則___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知圓C的圓心在直線上,且過點,(1)求圓C的方程;(2)若圓C與直線交于A,B兩點,______,求m的值從下列三個條件中任選一個補充在上面問題中并作答:條件①:;條件②:圓上一點P到直線的最大距離為;條件③:18.(12分)已知橢圓:的長軸長是短軸長的倍,且經過點.(1)求的標準方程;(2)的右頂點為,過右焦點的直線與交于不同的兩點,,求面積的最大值.19.(12分)設等比數列的前項和為,且()(1)求數列的通項公式;(2)在與之間插入個實數,使這個數依次組成公差為的等差數列,設數列的前項和為,求證:20.(12分)已知關于的不等式(1)若不等式的解集為,求的值(2)若不等式的解集為,求的取值范圍21.(12分)已知數列的前項和(1)求數列的通項公式;(2)求數列的前項和22.(10分)已知數列滿足,.(1)求證數列是等差數列,并求通項公式;(2)已知數列的前項和為,求.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】設直線的方程為,代入點的坐標即得解.【詳解】解:設直線的方程為,把點坐標代入直線方程得.所以所求的直線方程為.故選:A2、D【解析】由題建立平面直角坐標系,設拋物線方程為,結合條件即求.【詳解】建立如圖所示的直角坐標系:設拋物線方程為,由題意知:在拋物線上,即,解得:,,當水位下降1米后,即將代入,即,解得:,∴水面寬為米.故選:D.3、B【解析】利用正弦定理可直接求得結果.【詳解】在中,由正弦定理得:.故選:B.4、D【解析】先對函數求導,由已知,先求出,再令,并判斷函數在其左右兩邊的單調性,從而確定極大值點,然后帶入原函數即可完成求解.【詳解】因為,,所以,所以,,令,解得或,所以當,,單調遞增;時,,單調遞減;當,,單調遞增,所以的極大值為故選:D5、D【解析】計算,然后等價于在(0,+∞)由2個不同的實數根,然后計算即可.【詳解】的定義域是(0,+∞),,若函數有兩個不同的極值點,則在(0,+∞)由2個不同的實數根,故,解得:,故選:D.【點睛】本題考查根據函數極值點個數求參,考查計算能力以及思維轉變能力,屬基礎題.6、A【解析】求出圓關于軸的對稱圓的圓心坐標,以及半徑,然后求解圓與圓的圓心距減去兩個圓的半徑和,即可求出的最小值.【詳解】圓關于軸對稱圓的圓心坐標,半徑為1,圓的圓心坐標為,半徑為3,易知,當三點共線時,取得最小值,的最小值為圓與圓的圓心距減去兩個圓的半徑和,即:.故選:A.注意:9至12題為多選題7、A【解析】直接由等差中項得到結果.詳解】由得.故選:A.8、D【解析】過作準線的垂線,垂足為,則,當且僅當三點共線時等號成立,此時,故,所以,選D9、D【解析】運用不等式性質,結合特殊值法,對選項注逐一判斷正誤即可.【詳解】選項A中,若,時,則成立,否則,若,則,顯然錯誤,故選項A錯誤;選項B中,若,,則能推出,否則,若,則,顯然錯誤,故選項B錯誤;選項C中,若,則,顯然錯誤,故選項C錯誤;選項D中,若,顯然,由不等式性質知不等式兩邊同乘以一個正數,不等式不變號,即.故選:D10、A【解析】求出點關于坐標原點的對稱點是B,再利用兩點之間的距離即可求得結果.【詳解】點關于坐標原點的對稱點是故選:A11、D【解析】由雙曲線定義結合參數a的取值分類討論而得.【詳解】依題意得,當時,,且,點P的軌跡為雙曲線的右支;當時,,故點P的軌跡為一條射線.故選D.故選:D12、B【解析】設,進而根據題意,結合中點弦的問題得,進而再求解準線方程即可.【詳解】解:根據題意,設,所以①,②,所以,①②得:,即,因為直線AB的斜率為1,線段AB的中點的橫坐標為3,所以,即,所以拋物線,準線方程為.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、或【解析】點關于軸的對稱點為,即反射光線過點,分別討論反射光線的斜率存在與不存在的情況,進而求解即可【詳解】點關于軸的對稱點為,(1)設反射光線的斜率為,則反射光線的方程為,即,因為反射光線與圓相切,所以圓心到反射光線的距離,即,解得,所以反射光線方程為:;(2)當不存在時,反射光線,此時,也與圓相切,故答案為:或【點睛】本題考查直線在光學中的應用,考查圓的切線方程14、2【解析】設出曲線上任意一點,利用兩點間距離公式表達出,利用基本不等式求出最小值.【詳解】當時,顯然不成立,故,此時,設曲線任意一點,則,其中,當且僅當,即時等號成立,此時即為最小值.故答案為:215、【解析】依題意,設所求的雙曲線的方程為.點為該雙曲線上的點,.該雙曲線的方程為:,即.故本題正確答案是.16、1【解析】根據,由求解.【詳解】因為向量,且,所以,即,解得.故答案為:1三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據圓心在過點,的線段的中垂線上,同時圓心圓心在直線上,可求出圓心的坐標,進而求得半徑,最后求出其標準方程;(2)選①利用用垂徑定理可求得答案,選②根據圓上一點P到直線的最大距離為可求得答案,選③先利用向量的數量積可求得,解法就和選①時相同.【小問1詳解】由題意可知,圓心在點的中垂線上,該中垂線的方程為,于是,由,解得圓心,圓C的半徑所以,圓C的方程為;【小問2詳解】①,因為,,所以圓心C到直線l的距離,則,解得,②,圓上一點P到直線的最大距離為,可知圓心C到直線l的距離則,解得,③,因為,所以,得,又,所以圓心C到直線l的距離,則,解得18、(1);(2)【解析】(1)利用已知條件,結合橢圓方程求出,即可得到橢圓方程(2)設出直線方程,聯(lián)立橢圓與直線方程,利用韋達定理,弦長公式,列出三角形的面積,再利用基本不等式轉化求解即可【詳解】(1)解:由題意解得,,所以橢圓的標準方程為(2)點,右焦點,由題意知直線的斜率不為0,故設的方程為,,,聯(lián)立方程得消去,整理得,∴,,,,當且僅當時等號成立,此時:,所以面積的最大值為【點睛】本題考查橢圓的性質和方程的求法,考查聯(lián)立直線方程和橢圓方程消去未知數,運用韋達定理化簡整理和運算能力,屬于中檔題19、(1)(2)見解析【解析】(1)由兩式相減得,所以()因為等比,且,所以,所以故(2)由題設得,所以,所以,則,所以20、(1);(2)【解析】(1)根據關于的不等式的解集為,得到和1是方程的兩個實數根,再利用韋達定理求解.(2)根據關于的不等式的解集為.又因為,利用判別式法求解.【詳解】(1)因為關于的不等式的解集為,所以和1是方程的兩個實數根,由韋達定理可得,得(2)因為關于的不等式的解集為因為所以,解得,故的取值范圍為【點睛】本題主要考查一元二次不等式的解集和恒成立問題,還考查了運算求解的能力,屬于中檔題.21、(1)(2)【解析】(1)利用與的關系求數列的通項公式;(2)利用錯位相減法求和即可.【小問1詳解】因為,故當時,,兩式相減得,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 山西衛(wèi)生健康職業(yè)學院《金融風險分析師(FRM)專題(雙語)》2023-2024學年第二學期期末試卷
- 浙江金融職業(yè)學院《供變電系統(tǒng)項目設計》2023-2024學年第二學期期末試卷
- 廈門工學院《計算機在林業(yè)中的應用》2023-2024學年第二學期期末試卷
- 湖南鐵道職業(yè)技術學院《生物化學實驗A》2023-2024學年第二學期期末試卷
- 華北理工大學輕工學院《科研寫作》2023-2024學年第二學期期末試卷
- 齊魯醫(yī)藥學院《中外文化比較專題》2023-2024學年第二學期期末試卷
- 重慶對外經貿學院《包裝材料及應用》2023-2024學年第二學期期末試卷
- 醫(yī)院科室年度工作總結
- 母親六十歲生日宴會主持詞(7篇)
- 公司前臺的工作總結
- 2024-2025學年高中物理第十二章機械波4波的衍射和干涉課時作業(yè)含解析新人教版選修3-4
- 2025年新華師大版數學七年級下冊全冊導學案
- 《供熱工程》課件
- 倉管員業(yè)務技能培訓
- 安全管理人員七大職責
- 《國民經濟行業(yè)分類與代碼》
- 音樂教育國際化進程-洞察分析
- 植入式靜脈給藥裝置護理技術課件
- 單兵綜合演練
- 疼痛中醫(yī)護理
- 歐式風格的室內設計
評論
0/150
提交評論