2024屆新疆吐魯番市高昌區(qū)二中數(shù)學(xué)高二上期末監(jiān)測模擬試題含解析_第1頁
2024屆新疆吐魯番市高昌區(qū)二中數(shù)學(xué)高二上期末監(jiān)測模擬試題含解析_第2頁
2024屆新疆吐魯番市高昌區(qū)二中數(shù)學(xué)高二上期末監(jiān)測模擬試題含解析_第3頁
2024屆新疆吐魯番市高昌區(qū)二中數(shù)學(xué)高二上期末監(jiān)測模擬試題含解析_第4頁
2024屆新疆吐魯番市高昌區(qū)二中數(shù)學(xué)高二上期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆新疆吐魯番市高昌區(qū)二中數(shù)學(xué)高二上期末監(jiān)測模擬試題考生請注意:1.答題前請將考場、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,則點(diǎn)到平面的距離為()A. B.C. D.2.拋物線的焦點(diǎn)到雙曲線的漸近線的距離是()A. B.C.1 D.3.已知,,,若、、三個(gè)向量共面,則實(shí)數(shù)A3 B.5C.7 D.94.已知雙曲線,則該雙曲線的實(shí)軸長為()A.1 B.2C. D.5.已知,為雙曲線的兩個(gè)焦點(diǎn),點(diǎn)P在雙曲線上且滿足,那么點(diǎn)P到x軸的距離為()A. B.C. D.6.若不等式在上有解,則的最小值是()A.0 B.-2C. D.7.若空間中n個(gè)不同的點(diǎn)兩兩距離都相等,則正整數(shù)n的取值A(chǔ).至多等于3 B.至多等于4C.等于5 D.大于58.已知過點(diǎn)的直線與圓相切,且與直線垂直,則()A. B.C. D.9.曲線在點(diǎn)處的切線方程是()A. B.C. D.10.已知數(shù)列的通項(xiàng)公式為,按項(xiàng)的變化趨勢,該數(shù)列是()A.遞增數(shù)列 B.遞減數(shù)列C.擺動(dòng)數(shù)列 D.常數(shù)列11.在條件下,目標(biāo)函數(shù)的最大值為2,則的最小值是()A.20 B.40C.60 D.8012.已知函數(shù)的導(dǎo)數(shù)為,則等于()A.0 B.1C.2 D.4二、填空題:本題共4小題,每小題5分,共20分。13.關(guān)于曲線C:1,有如下結(jié)論:①曲線C關(guān)于原點(diǎn)對稱;②曲線C關(guān)于直線x±y=0對稱;③曲線C是封閉圖形,且封閉圖形的面積大于2π;④曲線C不是封閉圖形,且它與圓x2+y2=2無公共點(diǎn);⑤曲線C與曲線D:|x|+|y|=2有4個(gè)公共點(diǎn),這4點(diǎn)構(gòu)成正方形其中正確結(jié)論的個(gè)數(shù)是_____14.設(shè)P為圓上一動(dòng)點(diǎn),Q為直線上一動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),則的最小值為___15.在的展開式中項(xiàng)的系數(shù)為______.(結(jié)果用數(shù)值表示)16.已知,,若,則______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知直線經(jīng)過兩條直線和的交點(diǎn),且與直線垂直(1)求直線的一般式方程;(2)若圓的圓心為點(diǎn),直線被該圓所截得的弦長為,求圓的標(biāo)準(zhǔn)方程18.(12分)已知等差數(shù)列滿足,(1)求數(shù)列的通項(xiàng)公式及前10項(xiàng)和;(2)等比數(shù)列滿足,,求和:19.(12分)已知橢圓F:經(jīng)過點(diǎn)且離心率為,直線和是分別過橢圓F的左、右焦點(diǎn)的兩條動(dòng)直線,它們與橢圓分別相交于點(diǎn)A、B和C、D,O為坐標(biāo)原點(diǎn),直線AB和直線CD相交于M.記直線的斜率分別為,且(1)求橢圓F的標(biāo)準(zhǔn)方程(2)是否存在定點(diǎn)P,Q,使得為定值.若存在,請求出P、Q的坐標(biāo),若不存在,請說明理由20.(12分)在平面直角坐標(biāo)系中,已知拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合(1)求橢圓的離心率;(2)求拋物線的方程;(3)設(shè)是拋物線上一點(diǎn),且,求點(diǎn)的坐標(biāo)21.(12分)已知拋物線的焦點(diǎn)為,點(diǎn)在拋物線上,且點(diǎn)的縱坐標(biāo)為4,(1)求拋物線的方程;(2)過點(diǎn)作直線交拋物線于兩點(diǎn),試問拋物線上是否存在定點(diǎn)使得直線與的斜率互為倒數(shù)?若存在求出點(diǎn)的坐標(biāo),若不存在說明理由22.(10分)如圖,在四棱錐中,底面為直角梯形,平面平面,,.(1)證明:平面;(2)已知,,,且直線與平面所成角的正弦值為,求平面與平面夾角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】根據(jù)給定條件求出平面的法向量,再利用空間向量求出點(diǎn)到平面的距離.【詳解】依題意,,設(shè)平面的法向量,則,令,得,則點(diǎn)到平面的距離為,所以點(diǎn)到平面的距離為.故選:A2、B【解析】先確定拋物線的焦點(diǎn)坐標(biāo),和雙曲線的漸近線方程,再由點(diǎn)到直線的距離公式即可求出結(jié)果.【詳解】因?yàn)閽佄锞€的焦點(diǎn)坐標(biāo)為,雙曲線的漸近線方程為,由點(diǎn)到直線的距離公式可得.故選:B3、A【解析】由空間向量共面原理得存在實(shí)數(shù),,使得,由此能求出實(shí)數(shù)【詳解】解:,,,、、三個(gè)向量共面,存在實(shí)數(shù),,使得,即有:,解得,,實(shí)數(shù)故選:【點(diǎn)睛】本題考查空間向量共面原理的應(yīng)用,屬于基礎(chǔ)題4、B【解析】根據(jù)給定的雙曲線方程直接計(jì)算即可作答.【詳解】雙曲線的實(shí)半軸長,所以該雙曲線的實(shí)軸長為2.故選:B5、D【解析】設(shè),由雙曲線的性質(zhì)可得的值,再由,根據(jù)勾股定理可得的值,進(jìn)而求得,最后利用等面積法,即可求解【詳解】設(shè),,為雙曲線的兩個(gè)焦點(diǎn),設(shè)焦距為,,點(diǎn)P在雙曲線上,,,,,,的面積為,利用等面積法,設(shè)的高為,則為點(diǎn)P到x軸的距離,則,故選:D【點(diǎn)睛】本題考查雙曲線的性質(zhì),難度不大.6、D【解析】將題設(shè)條件轉(zhuǎn)化為在上有解,然后求出的最大值即可得解.【詳解】不等式在上有解,即為在上有解,設(shè),則在上單調(diào)遞減,所以,所以,即,故選:D.【點(diǎn)睛】本題主要考查二次不等式能成立問題,可以選擇分離參數(shù)轉(zhuǎn)化為最值問題,也可以進(jìn)行分情況討論.7、B【解析】先考慮平面上的情況:只有三個(gè)點(diǎn)的情況成立;再考慮空間里,只有四個(gè)點(diǎn)的情況成立,注意運(yùn)用外接球和三角形三邊的關(guān)系,即可判斷解:考慮平面上,3個(gè)點(diǎn)兩兩距離相等,構(gòu)成等邊三角形,成立;4個(gè)點(diǎn)兩兩距離相等,由三角形的兩邊之和大于第三邊,則不成立;n大于4,也不成立;空間中,4個(gè)點(diǎn)兩兩距離相等,構(gòu)成一個(gè)正四面體,成立;若n>4,由于任三點(diǎn)不共線,當(dāng)n=5時(shí),考慮四個(gè)點(diǎn)構(gòu)成的正四面體,第五個(gè)點(diǎn),與它們距離相等,必為正四面體的外接球的球心,由三角形的兩邊之和大于三邊,故不成立;同理n>5,不成立故選B點(diǎn)評:本題考查空間幾何體的特征,主要考查空間兩點(diǎn)的距離相等的情況,注意結(jié)合外接球和三角形的兩邊與第三邊的關(guān)系,屬于中檔題和易錯(cuò)題8、B【解析】首先由點(diǎn)的坐標(biāo)滿足圓的方程來確定點(diǎn)在圓上,然后求出過點(diǎn)的圓的切線方程,最后由兩直線的垂直關(guān)系轉(zhuǎn)化為斜率關(guān)系求解.【詳解】由題知,圓的圓心,半徑.因?yàn)?,所以點(diǎn)在圓上,所以過點(diǎn)的圓的切線與直線垂直,設(shè)切線的斜率,則有,即,解得.因?yàn)橹本€與切線垂直,所以,解得.故選:B.9、B【解析】求導(dǎo),得到曲線在點(diǎn)處的斜率,寫出切線方程.【詳解】因?yàn)?,所以曲線在點(diǎn)處斜率為4,所以曲線在點(diǎn)處的切線方程是,即,故選:B10、B【解析】分析的單調(diào)性,即可判斷和選擇.【詳解】因?yàn)?,顯然隨著的增大,是遞增的,故是遞減的,則數(shù)列是遞減數(shù)列.故選:B.11、C【解析】首先畫出可行域,找到最優(yōu)解,得到關(guān)系式作為條件,再去求的最小值.【詳解】畫出的可行域,如下圖:由得由得;由得;目標(biāo)函數(shù)取最大值時(shí)必過N點(diǎn),則則(當(dāng)且僅當(dāng)時(shí)等號(hào)成立)故選:C12、A【解析】先對函數(shù)求導(dǎo),然后代值計(jì)算即可【詳解】因?yàn)?,所?故選:A二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】直接利用曲線的性質(zhì),對稱性的應(yīng)用可判斷①②;求出可判斷③;聯(lián)立方程,解方程組可判斷④⑤的結(jié)論【詳解】對于①,將方程中的x換為﹣x,y換為﹣y,方程不變,曲線C關(guān)于原點(diǎn)對稱,故①正確;對于②,將方程中的x換為﹣y,把y換成﹣x,方程不變,曲線C關(guān)于直線x±y=0對稱,故②正確;對于③,由方程得,故曲線C不是封閉圖形,故③錯(cuò)誤;對于④,曲線C:,不是封閉圖形,聯(lián)立整理可得:,方程無解,故④正確;對于⑤,曲線C與曲線D:由于,解得,根據(jù)對稱性,可得公共點(diǎn)為,故曲線C與曲線D有四個(gè)交點(diǎn),這4點(diǎn)構(gòu)成正方形,故⑤正確故答案為:414、4【解析】取點(diǎn),可得,從而,,從而可求解【詳解】解:由圓,得圓心,半徑,取點(diǎn)A(3,0),則,又,∴,∴,∴,當(dāng)且僅當(dāng)直線時(shí)取等號(hào)故答案為:15、【解析】先求解出該二項(xiàng)式展開式的通項(xiàng),然后求解出滿足題意的項(xiàng)數(shù)值,帶入通項(xiàng)即可求解出展開式的系數(shù).【詳解】展開式通項(xiàng)為,由題意,令,解得,,所以項(xiàng)的系數(shù)為.故答案為:.16、【解析】根據(jù)空間向量垂直得到等量關(guān)系,求出答案.【詳解】由題意得:,解得:故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由題意求出兩直線的交點(diǎn),再求出所求直線的斜率,用點(diǎn)斜式寫出直線的方程;(2)根據(jù)題意求出圓的半徑,由圓心寫出圓的標(biāo)準(zhǔn)方程【小問1詳解】解:由題意知,解得,直線和的交點(diǎn)為;設(shè)直線的斜率為,與直線垂直,;直線的方程為,化為一般形式為;【小問2詳解】解:設(shè)圓的半徑為,則圓心為到直線的距離為,由垂徑定理得,解得,圓的標(biāo)準(zhǔn)方程為18、(1),175(2)【解析】(1)由已知結(jié)合等差數(shù)列的通項(xiàng)公式先求出公差,然后結(jié)合通項(xiàng)公式及求和公式即可求解;(2)結(jié)合等比數(shù)列的性質(zhì)先求出,然后結(jié)合等比數(shù)列性質(zhì)及求和公式可求【小問1詳解】解:等差數(shù)列滿足,,所以,,;【小問2詳解】解:因?yàn)榈缺葦?shù)列滿足,,所以或(舍去),由等比數(shù)列的性質(zhì)可知,是以1為首項(xiàng),4為公比的等比數(shù)列,所以,所以19、(1);(2)存在點(diǎn),使得為定值.【解析】(1)設(shè),,,結(jié)合條件即求;(2)由題可設(shè)直線方程,利用韋達(dá)定理法可得,再結(jié)合條件可得點(diǎn)的軌跡方程為,然后利用橢圓的定義即得結(jié)論.【小問1詳解】設(shè),,,橢圓方程為:,橢圓過點(diǎn),,解得t=1,所以橢圓F的方程是【小問2詳解】由題可得焦點(diǎn)的坐標(biāo)分別為,當(dāng)直線AB或CD的斜率不存在時(shí),點(diǎn)M的坐標(biāo)為或,當(dāng)直線AB和CD的斜率都存在時(shí),設(shè)斜率分別為,點(diǎn),直線AB為,聯(lián)立,得則,,同理可得,,因?yàn)?,所以,化簡得由題意,知,所以設(shè)點(diǎn),則,所以,化簡得,當(dāng)直線或的斜率不存在時(shí),點(diǎn)M的坐標(biāo)為或,也滿足此方程所以點(diǎn)在橢圓上,根據(jù)橢圓定義可知,存在定點(diǎn),使得為定值【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題的關(guān)鍵是利用韋達(dá)定理法及題設(shè)條件求出點(diǎn)M的軌跡方程,再結(jié)合橢圓的定義,從而問題得到解決.20、(1);(2);(3)【解析】(1)由橢圓方程即可求出離心率.(2)求出橢圓的焦點(diǎn)即為拋物線的焦點(diǎn),即可求出答案.(3)由拋物線定義可求出點(diǎn)的坐標(biāo)【小問1詳解】由題意可知,.【小問2詳解】橢圓的右焦點(diǎn)為,故拋物線的焦點(diǎn)為.拋物線的方程為.【小問3詳解】設(shè)的坐標(biāo)為,,解得,.故的坐標(biāo)為.21、(1)(2)存在,【解析】(1)利用拋物線的焦半徑公式求得點(diǎn)的橫坐標(biāo),進(jìn)而求得p,可得答案;(2)根據(jù)題意可設(shè)直線方程,和拋物線方程聯(lián)立,得到根與系數(shù)的關(guān)系式,利用直線與的斜率互為倒數(shù)列出等式,化簡可得結(jié)論.【小問1詳解】(1)則,,,,故C的方程為:;【小問2詳解】假設(shè)存在定點(diǎn),使得直線與的斜率互為倒數(shù),由題意可知,直線AB的斜率存在,且不為零,,,,,所以Δ>0y1+即或,,,則,,使得直線與的斜率互為倒數(shù).22、(1)證明過程見解析;(2).【解析】(1)利用平面與平面垂直

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論