2024屆銀川市第三中學(xué)高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析_第1頁
2024屆銀川市第三中學(xué)高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析_第2頁
2024屆銀川市第三中學(xué)高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析_第3頁
2024屆銀川市第三中學(xué)高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析_第4頁
2024屆銀川市第三中學(xué)高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆銀川市第三中學(xué)高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測(cè)模擬試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.阿基米德(公元前287年~公元前212年)不僅是著名物理學(xué)家,也是著名的數(shù)學(xué)家,他利用“逼近法”得到的橢圓的面積除以圓周率等于橢圓的長(zhǎng)半軸長(zhǎng)與短半軸長(zhǎng)的乘積.若橢圓的對(duì)稱軸為坐標(biāo)軸,焦點(diǎn)在軸上,且橢圓的離心率為,面積為,則橢圓的標(biāo)準(zhǔn)方程為()A B.C. D.2.已知F為橢圓C:=1(a>b>0)右焦點(diǎn),O為坐標(biāo)原點(diǎn),P為橢圓C上一點(diǎn),若|OP|=|OF|,∠POF=120°,則橢圓C的離心率為()A. B.C.-1 D.-13.已知是空間的一個(gè)基底,,,,若四點(diǎn)共面.則實(shí)數(shù)的值為()A. B.C. D.4.幾位大學(xué)生響應(yīng)國(guó)家的創(chuàng)業(yè)號(hào)召,開發(fā)了一款應(yīng)用軟件.為激發(fā)大家學(xué)習(xí)數(shù)學(xué)的興趣,他們推出了“解數(shù)學(xué)題獲取軟件激活碼”的活動(dòng).這款軟件的激活碼為下面數(shù)學(xué)問題的答案:已知數(shù)列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一項(xiàng)是20,接下來的兩項(xiàng)是20,21,再接下來的三項(xiàng)是20,21,22,依此類推.求滿足如下條件的最小整數(shù)N:N>100且該數(shù)列的前N項(xiàng)和為2的整數(shù)冪.那么該款軟件的激活碼是A.440 B.330C.220 D.1105.頂點(diǎn)在原點(diǎn),關(guān)于軸對(duì)稱,并且經(jīng)過點(diǎn)的拋物線方程為()A. B.C. D.6.已知橢圓的左、右焦點(diǎn)分別為、,點(diǎn)在橢圓上,若,則的面積為()A. B.C. D.7.在等差數(shù)列中,已知,則數(shù)列的前6項(xiàng)之和為()A.12 B.32C.36 D.378.如圖①所示,將一邊長(zhǎng)為1的正方形沿對(duì)角線折起,形成三棱錐,其主視圖與俯視圖如圖②所示,則左視圖的面積為()A. B.C. D.9.命題:,否定是()A., B.,C., D.,10.已知直線平分圓C:,則最小值為()A.3 B.C. D.11.直線與直線交于點(diǎn)Q,m是實(shí)數(shù),O為坐標(biāo)原點(diǎn),則的最大值是()A.2 B.C. D.412.若等比數(shù)列滿足,,則數(shù)列的公比為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中.若成公比為的等比數(shù)列,則____________14.已知圓的方程為,點(diǎn)是直線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)作圓的兩條切線為切點(diǎn),則四邊形面積的最小值為__________;直線__________過定點(diǎn).15.已知數(shù)列滿足,則的前20項(xiàng)和___________.16.已知數(shù)列滿足下列條件:①數(shù)列是等比數(shù)列;②數(shù)列是單調(diào)遞增數(shù)列;③數(shù)列的公比滿足.請(qǐng)寫出一個(gè)符合條件的數(shù)列的通項(xiàng)公式__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知直線:,直線:.(1)若,求與的距離;(2)若,求與的交點(diǎn)的坐標(biāo).18.(12分)已知雙曲線的漸近線方程為,且過點(diǎn)(1)求雙曲線的方程;(2)過雙曲線的一個(gè)焦點(diǎn)作斜率為的直線交雙曲線于兩點(diǎn),求弦長(zhǎng)19.(12分)已知圓M經(jīng)過點(diǎn)F(2,0),且與直線x=-2相切.(1)求圓心M的軌跡C的方程;(2)過點(diǎn)(-1,0)的直線l與曲線C交于A,B兩點(diǎn),若,求直線l的斜率k的取值范圍.20.(12分)已知等比數(shù)列的首項(xiàng),公比,在中每相鄰兩項(xiàng)之間都插入3個(gè)正數(shù),使它們和原數(shù)列的數(shù)一起構(gòu)成一個(gè)新的等比數(shù)列.(1)求數(shù)列的通項(xiàng)公式;(2)記數(shù)列前n項(xiàng)的乘積為,試問:是否有最大值?如果是,請(qǐng)求出此時(shí)n以及最大值;若不是,請(qǐng)說明理由.21.(12分)已知拋物線C:上一點(diǎn)到焦點(diǎn)F的距離為2(1)求實(shí)數(shù)p的值;(2)若直線l過C的焦點(diǎn),與拋物線交于A,B兩點(diǎn),且,求直線l的方程22.(10分)已知函數(shù),其中為常數(shù),且(1)求證:時(shí),;(2)已知a,b,p,q為正實(shí)數(shù),滿足,比較與的大小關(guān)系.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】由題意,設(shè)出橢圓的標(biāo)準(zhǔn)方程為,然后根據(jù)橢圓的離心率以及橢圓面積列出關(guān)于的方程組,求解方程組即可得答案【詳解】由題意,設(shè)橢圓的方程為,由橢圓的離心率為,面積為,∴,解得,∴橢圓的方程為,故選:C.2、D【解析】記橢圓的左焦點(diǎn)為,在中,通過余弦定理得出,,根據(jù)橢圓的定義可得,進(jìn)而可得結(jié)果.【詳解】記橢圓的左焦點(diǎn)為,在中,可得,在中,可得,故,故,故選:D.3、A【解析】由共面定理列式得,再根據(jù)對(duì)應(yīng)系數(shù)相等計(jì)算.【詳解】因?yàn)樗狞c(diǎn)共面,設(shè)存在有序數(shù)對(duì)使得,則,即,所以得.故選:A4、A【解析】由題意得,數(shù)列如下:則該數(shù)列的前項(xiàng)和為,要使,有,此時(shí),所以是第組等比數(shù)列的部分和,設(shè),所以,則,此時(shí),所以對(duì)應(yīng)滿足條件的最小整數(shù),故選A.點(diǎn)睛:本題非常巧妙地將實(shí)際問題和數(shù)列融合在一起,首先需要讀懂題目所表達(dá)的具體含義,以及觀察所給定數(shù)列的特征,進(jìn)而判斷出該數(shù)列的通項(xiàng)和求和.另外,本題的難點(diǎn)在于數(shù)列里面套數(shù)列,第一個(gè)數(shù)列的和又作為下一個(gè)數(shù)列的通項(xiàng),而且最后幾項(xiàng)并不能放在一個(gè)數(shù)列中,需要進(jìn)行判斷.Ⅱ卷5、C【解析】根據(jù)題意,設(shè)拋物線的方程為,進(jìn)而待定系數(shù)求解即可.【詳解】解:由題,設(shè)拋物線的方程為,因?yàn)樵趻佄锞€上,所以,解得,即所求拋物線方程為故選:C6、B【解析】求出,可知為等腰三角形,取的中點(diǎn),可得出,利用勾股定理求得,利用三角形的面積公式可求得結(jié)果.【詳解】在橢圓中,,,則,所以,,由橢圓的定義可得,取的中點(diǎn),因?yàn)?,則,由勾股定理可得,所以,.故選:B.7、C【解析】直接按照等差數(shù)列項(xiàng)數(shù)性質(zhì)求解即可.【詳解】數(shù)列的前6項(xiàng)之和為.故選:C.8、A【解析】由視圖確定該幾何體的特征,即可得解.【詳解】由主視圖可以看出,A點(diǎn)在面上的投影為的中點(diǎn),由俯視圖可以看出C點(diǎn)在面上的投影為的中點(diǎn),所以其左視圖為如圖所示的等腰直角三角形,直角邊長(zhǎng)為,于是左視圖的面積為故選:A.9、D【解析】根據(jù)給定條件利用全稱量詞命題的否定是存在量詞命題直接寫出作答.【詳解】命題:,是全稱量詞命題,其否定是存在量詞命題,所以命題:,的否定是:,.故選:D10、D【解析】根據(jù)直線過圓心求得,再利用基本不等式求和的最小值即可.【詳解】根據(jù)題意,直線過點(diǎn),即,則,當(dāng)且僅當(dāng),即時(shí)取得最小值.故選:D.11、B【解析】求出兩直線的交點(diǎn)坐標(biāo),結(jié)合兩點(diǎn)間的距離公式得到,進(jìn)而可以求出結(jié)果.【詳解】因?yàn)榕c的交點(diǎn)坐標(biāo)為所以,當(dāng)時(shí),,所以的最大值是,故選:B.12、D【解析】設(shè)等比數(shù)列的公比為,然后由已知條件列方程組求解即可【詳解】設(shè)等比數(shù)列的公比為,因?yàn)?,,所以,所以,解得,故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由條件可得,即,由余弦定理可得答案.【詳解】由成公比為的等比數(shù)列,即由正弦定理可知所以故答案為:14、①.②.【解析】根據(jù)切線的相關(guān)性質(zhì)將四邊形面積化為,即求出最小值即可,即圓心到直線的距離;又可得四點(diǎn)在以為直徑的圓上,且是兩圓的公共弦,設(shè)出點(diǎn)坐標(biāo),求出圓的方程可得直線方程,即可得出定點(diǎn).詳解】由圓得圓心,半徑,由題意可得,在中,,,可知當(dāng)垂直直線時(shí),,所以四邊形的面積的最小值為,可得四點(diǎn)在以為直徑的圓上,且是兩圓的公共弦,設(shè),則圓心為,半徑為,則該圓方程為,整理可得,聯(lián)立兩圓可得直線AB的方程為,即可得當(dāng)時(shí),,故直線過定點(diǎn).故答案為:;.15、135【解析】直接利用數(shù)列的遞推關(guān)系式寫出相鄰四項(xiàng)之和,進(jìn)而求出數(shù)列的和.【詳解】數(shù)列滿足,所以,故,當(dāng)時(shí),,當(dāng)時(shí),,,當(dāng)時(shí),,所以.故答案為:135.16、(答案不唯一)【解析】根據(jù)題意判斷數(shù)列特征,寫出一個(gè)符合題意的數(shù)列的通項(xiàng)公式即可.【詳解】因?yàn)閿?shù)列是等比數(shù)列,數(shù)列是單調(diào)遞增數(shù)列,數(shù)列公比滿足,所以等比數(shù)列公比,且各項(xiàng)均為負(fù)數(shù),符合題意的一個(gè)數(shù)列的通項(xiàng)公式為.故答案為:(答案不唯一)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1).(2).【解析】分析:(1)先根據(jù)求出k的值,再利用平行線間的距離公式求與的距離.(2)先根據(jù)求出k的值,再解方程組得與的交點(diǎn)的坐標(biāo).詳解:(1)若,則由,即,解得或.當(dāng)時(shí),直線:,直線:,兩直線重合,不符合,故舍去;當(dāng)時(shí),直線:,直線:,所以.(2)若,則由,得.所以兩直線方程為:,:,聯(lián)立方程組,解得,所以與的交點(diǎn)的坐標(biāo)為.點(diǎn)睛:(1)本題主要考查直線的位置關(guān)系和距離的計(jì)算,意在考查學(xué)生對(duì)這些知識(shí)的掌握水平和計(jì)算能力.(2)直線與直線平行,則且兩直線不重合.直線與直線垂直,則.18、(1);(2).【解析】(1)根據(jù)雙曲線漸近線斜率、雙曲線過點(diǎn)可構(gòu)造方程求得,由此可得雙曲線方程;(2)由雙曲線方程可得焦點(diǎn)坐標(biāo),由此可得方程,與雙曲線方程聯(lián)立后,利用弦長(zhǎng)公式可求得結(jié)果.【小問1詳解】由雙曲線方程知:漸近線斜率,又漸近線方程為,;雙曲線過點(diǎn),;由得:,雙曲線的方程為:;【小問2詳解】由(1)得:雙曲線的焦點(diǎn)坐標(biāo)為;若直線過雙曲線的左焦點(diǎn),則,由得:;設(shè),,則,;由雙曲線對(duì)稱性可知:當(dāng)過雙曲線右焦點(diǎn)時(shí),;綜上所述:.19、(1);(2).【解析】(1)設(shè)圓心,軌跡兩點(diǎn)的距離公式列出方程,整理方程即可;(2)設(shè)直線l的方程和點(diǎn)A、B的坐標(biāo),直線方程聯(lián)立拋物線方程,消去x得出關(guān)于y的一元二次方程,結(jié)合根的判別式和韋達(dá)定理表示出弦,進(jìn)而列出不等式,解之即可.【小問1詳解】設(shè)圓心,由題意知,,整理,得,即圓心M的軌跡C方程為:;【小問2詳解】由題意知,過點(diǎn)(-1,0)的直線l與拋物線C相交于點(diǎn)A、B,所以直線l的斜率存在且不為0,設(shè)直線,點(diǎn),則,消去x,得,或,,同理可得,所以,即,由,得,解得,綜上,或,所以或,即直線l的斜率的取值范圍為.20、(1)(2)當(dāng)或時(shí),有最大值.【解析】(1)利用等比數(shù)列通項(xiàng)公式求解即可;(2)求出數(shù)列的前n項(xiàng)的乘積為,利用二次函數(shù)的性質(zhì)求最值即可.【小問1詳解】由已知得,數(shù)列首項(xiàng),,設(shè)數(shù)列的公比為,即∴即,【小問2詳解】,即當(dāng)或5時(shí),有最大值.21、(1)2(2)或【解析】(1)根據(jù)拋物線上的點(diǎn)到焦點(diǎn)與準(zhǔn)線的距離相等可得到結(jié)果(2)通過聯(lián)立拋物線與直線方程利用韋達(dá)定理求解關(guān)系式即可得到結(jié)果【小問1詳解】拋物線焦點(diǎn)為,準(zhǔn)線方程為,因?yàn)?/p>

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論