版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆云南省祿豐縣廣通中學高二數(shù)學第一學期期末達標檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線l經(jīng)過,兩點,則直線l的傾斜角是()A.30° B.60°C.120° D.150°2.雙曲線的焦點坐標是()A. B.C. D.3.已知正數(shù)x,y滿足,則取得最小值時()A. B.C.1 D.4.已知橢圓的中心為,一個焦點為,在上,若是正三角形,則的離心率為()A. B.C. D.5.雅言傳承文明,經(jīng)典浸潤人生.某市舉辦“中華經(jīng)典誦寫講大賽”,大賽分為四類:“誦讀中國”經(jīng)典誦讀大賽、“詩教中國”詩詞講解大賽、“筆墨中國”漢字書寫大賽、“印記中國”學生篆刻大賽.某人決定從這四類比賽中任選兩類參賽,則“誦讀中國”被選中的概率為()A. B.C. D.6.給出下列四個說法,其中正確的是A.命題“若,則”的否命題是“若,則”B.“”是“雙曲線的離心率大于”的充要條件C.命題“,”的否定是“,”D.命題“在中,若,則是銳角三角形”的逆否命題是假命題7.將一張坐標紙折疊一次,使點與重合,求折痕所在直線是()A. B.C. D.8.如圖,在四棱錐中,平面,底面是正方形,,則下列數(shù)量積最大的是()A. B.C. D.9.為了解一片大約一萬株樹木的生長情況,隨機測量了其中100株樹木的底部周長(單位:㎝).根據(jù)所得數(shù)據(jù)畫出的樣本頻率分布直方圖如圖,那么在這片樹木中,底部周長小于110㎝的株樹大約是()A.3000 B.6000C.7000 D.800010.在等差數(shù)列中,已知,,則使數(shù)列的前n項和成立時n的最小值為()A.6 B.7C.9 D.1011.已知拋物線過點,點為平面直角坐標系平面內(nèi)一點,若線段的垂直平分線過拋物線的焦點,則點與原點間的距離的最小值為()A. B.C. D.12.若直線被圓截得的弦長為,則的最小值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)處取極值,則___________14.我國古代數(shù)學名著《九章算術》有“米谷粒分”題:糧倉開倉收糧,有人送來1524石,驗得米內(nèi)夾谷,抽樣取米一把,數(shù)得254粒內(nèi)夾谷28粒,則這批米內(nèi)夾谷約為_______石15.已知函數(shù)是定義域上的單調遞增函數(shù),是的導數(shù)且為定義域上的單調遞減函數(shù),請寫出一個滿足條件的函數(shù)的解析式___________16.已知雙曲線的左、右焦點分別為,右頂點為,為雙曲線上一點,且,線段的垂直平分線恰好經(jīng)過點,則雙曲線的離心率為_______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知三棱柱中,,,平面ABC,,E為AB中點,D為上一點(1)求證:;(2)當D為中點時,求平面ADC與平面所成角的正弦值18.(12分)已知數(shù)列中,,___________,其中.(1)求數(shù)列的通項公式;(2)設,求證:數(shù)列是等比數(shù)列;(3)求數(shù)列的前n項和.從①前n項和,②,③且,這三個條件中任選一個,補充在上面的問題中并作答.19.(12分)如圖,第1個圖形需要4根火柴,第2個圖形需要7根火柴,,設第n個圖形需要根火柴(1)試寫出,并求;(2)記前n個圖形所需的火柴總根數(shù)為,設,求數(shù)列的前n項和20.(12分)已知橢圓的左焦點為,點到短袖的一個端點的距離為.(1)求橢圓的方程;(2)過點作斜率為的直線,與橢圓交于,兩點,若,求的取值范圍.21.(12分)設圓的圓心為A,直線l過點且與x軸不重合,l交圓A于C,D兩點,過B作AC的平行線交AD于點E(1)判斷與題中圓A的半徑的大小關系,并寫出點E的軌跡方程;(2)過點作斜率為,的兩條直線,分別交點E的軌跡于M,N兩點,且,證明:直線MN必過定點22.(10分)在四棱錐中,底面為直角梯形,,,平面底面,為的中點,是棱上的點,,,.(1)求證:平面平面;(2)若,求直線與所成角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】設直線l的傾斜角為,由題意可得直線l的斜率,即,∵,∴直線l的傾斜角為,故選:.2、B【解析】根據(jù)雙曲線的方程,求得,結合雙曲線的幾何性質,即可求解.【詳解】由題意,雙曲線,可得,所以,且雙曲線的焦點再軸上,所以雙曲線的焦點坐標為.故選:B.3、B【解析】根據(jù)基本不等式進行求解即可.【詳解】因為正數(shù)x,y,所以,當且僅當時取等號,即時,取等號,而,所以解得,故選:B4、D【解析】根據(jù)是正三角形可得的坐標,代入方程后可求離心率.【詳解】不失一般性,可設橢圓的方程為:,為半焦距,為右焦點,因為且,故,故,,整理得到,故,故選:D.5、B【解析】由已知條件得基本事件總數(shù)為種,符合條件的事件數(shù)為3中,由古典概型公式直接計算即可.【詳解】從四類比賽中選兩類參賽,共有種選擇,其中“誦讀中國”被選中的情況有3種,即“誦讀中國”和“詩教中國”,“誦讀中國”和“筆墨中國”,“誦讀中國”和“印記中國”,由古典概型公式可得,故選:.6、D【解析】A選項:否命題應該對條件結論同時否定,說法不正確;B選項:雙曲線的離心率大于,解得,所以說法不正確;C選項:否定應該是:,,所以說法不正確;D選項:“在中,若,則是銳角三角形”是假命題,所以其逆否命題也為假命題,所以說法正確.【詳解】命題“若,則”的否命題是“若,則”,所以A選項不正確;雙曲線的離心率大于,即,解得,則“”是“雙曲線的離心率大于”的充分不必要條件,所以B選項不正確;命題“,”的否定是“,”,所以C選項不正確;命題“在中,若,則是銳角三角形”,在中,若,可能,此時三角形不是銳角三角形,所以這是一個假命題,所以其逆否命題也是假命題,所以該選項說法正確.故選:D【點睛】此題考查四個命題關系,充分條件與必要條件,含有一個量詞的命題的否定,關鍵在于弄清邏輯關系,正確求解.7、D【解析】設,,則折痕所在直線是線段AB的垂直平分線,故求出AB中點坐標,折痕與直線AB垂直,進而求出斜率,用點斜式求出折痕所在直線方程.【詳解】,,所以與的中點坐標為,又,所以折痕所在直線的斜率為1,故折痕所在直線是,即.故選:D8、B【解析】設,根據(jù)線面垂直的性質得,,,,根據(jù)向量數(shù)量積的定義逐一計算,比較可得答案.【詳解】解:設,因為平面,所以,,,,又底面是正方形,所以,,對于A,;對于B,;對于C,;對于D,,所以數(shù)量積最大的是,故選:B.9、C【解析】先由頻率分布直方圖得到抽取的樣本中底部周長小于110㎝的概率,進而可求出結果.【詳解】由頻率分布直方圖可得,樣本中底部周長小于110㎝的概率為,因此在這片樹木中,底部周長小于110㎝的株樹大約是.故選:C.【點睛】本題主要考查頻率分布直方圖的應用,屬于基礎題型.10、D【解析】根據(jù)等差數(shù)列的性質及等差中項結合前項和公式求得,,從而得出結論.【詳解】,,,,,,,使數(shù)列的前n項和成立時n的最小值為10,故選:D.11、B【解析】將點的坐標代入拋物線的方程,求出的值,可求得拋物線的方程,求出的坐標,分析可知點的軌跡是以點為圓心,半徑為的圓,利用圓的幾何性質可求得點與原點間的距離的最小值.【詳解】將點的坐標代入拋物線的方程得,可得,故拋物線的方程為,易知點,由中垂線的性質可得,則點的軌跡是以點為圓心,半徑為的圓,故點的軌跡方程為,如下圖所示:由圖可知,當點、、三點共線且在線段上時,取最小值,且.故選:B.12、D【解析】先根據(jù)已知條件得出,再利用基本不等式求的最小值即可.【詳解】圓的標準方程為,圓心為,半徑為,若直線被截得弦長為,說明圓心在直線:上,即,即,∴,當且僅當,即時,等號成立故選:D.【點睛】本題主要考查利用基本不等式求最值,本題關鍵是求出,屬常規(guī)考題.二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】=.因為f(x)在1處取極值,所以1是f′(x)=0的根,將x=1代入得a=3.故答案為3.考點:利用導數(shù)研究函數(shù)的極值14、168石【解析】由題意,得這批米內(nèi)夾谷約為石考點:用樣本估計總體15、(答案不唯一)【解析】由題意可得0,結合在定義域上為減函數(shù)可取.【詳解】因為在定義域為單調增函數(shù)所以在定義域上0,又因為在定義域上為減函數(shù),且大于等于0.所以可取(),(),滿足條件所以可為().故答案為:(答案不唯一).16、【解析】在中求出,再在中求出,即可得到的齊次式,化簡即可求出離心率【詳解】設雙曲線:,,不妨設為雙曲線右支上一點因為線段的垂直平分線恰好經(jīng)過點,且,所以,在中,,所以,,在中,,所以,,因此,,化簡得,,即,而,解得故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)利用線面垂直的性質定理及線面垂直的判定定理即證;(2)利用坐標法即求.【小問1詳解】∵,E為AB中點,∴,∵平面ABC,平面ABC,∴,又,,∴平面,平面,∴;【小問2詳解】以C點為坐標原點,CA,CB,分別為x,y,z軸建立空間直角坐標系,不妨設,則平面的法向量為,設平面ADC法向量為,則,∴,即,令,則∴平面ADC與平面所成角的余弦值為,所以平面ADC與平面所成角的正弦值.18、(1)(2)見解析(3)【解析】(1)選①,根據(jù)與的關系即可得出答案;選②,根據(jù)與的關系結合等差數(shù)列的定義即可得出答案;選③,利用等差中項法可得數(shù)列是等差數(shù)列,再求出公差,即可得解;(2)求出數(shù)列的通項公式,再根據(jù)等比數(shù)列的定義即可得證;(3)求出數(shù)列的通項公式,再利用錯位相減法即可得出答案.【小問1詳解】解:選①,當時,,當時,也成立,所以;選②,因為,所以,所以數(shù)列是以為公差的等差數(shù)列,所以;選③且,因為,所以數(shù)列是等差數(shù)列,公差,所以;【小問2詳解】解:由(1)得,則,所以數(shù)列是以為首項,為公比的等比數(shù)列;【小問3詳解】解:,,①,②由①②得,所以.19、(1),;(2).【解析】(1)根據(jù)題設找到規(guī)律寫出,由等差數(shù)列的定義求.(2)由等差數(shù)列前n項和求,再利用裂項相消法求.【小問1詳解】由題意知:,,,,可得每增加一個正方形,火柴增加3根,即,所以數(shù)列是以4為首項,以3為公差的等差數(shù)列,則.【小問2詳解】由題意可知,,所以,則,所以,,即20、(1)(2)或【解析】(1)根據(jù)焦點坐標可得,根據(jù)點到短袖一個端點的距離為,然后根據(jù)即可;(2)先設聯(lián)立直線與橢圓的方程,然后根據(jù)韋達定理得到,兩點的坐標關系,然后根據(jù)建立關于直線的斜率的不等式,解出不等式即可.【小問1詳解】根據(jù)題意,已知橢圓的左焦點為,則有:點到短袖一個端點的距離為,則有:則有:故橢圓的方程為:【小問2詳解】設過點作斜率為的直線的方程為:聯(lián)立直線與橢圓的方程可得:則有:,直線過點,所以恒成立,不妨設,兩點的坐標分別為:,則有:又且則有:將,代入后可得:若,則有:解得:或21、(1)與半徑相等,(2)證明見解析【解析】(1)依據(jù)橢圓定義去求點E的軌跡方程事半功倍;(2)直線MN要分為斜率存在的和不存在的兩種情況進行討論,由設而不求法把條件轉化為直線MN過定點的條件即可解決.【小問1詳解】圓即為,可得圓心,半徑,由,可得,由,可得,即為,即有,則,所以其與半徑相等.因為,故E的軌跡為以A,B為焦點的橢圓(不包括左右頂點),且有,,即,,,則點E的軌跡方程為;【小問2詳解】當直線MN斜率不存在時,設直線方程為,則,,,,則,∴,此時直線MN的方程為當直線MN斜率存在時,設直線方程為:,與橢圓方程聯(lián)立:,得,設,,有則將*式代入化簡可得:,即,∴,此時直線MN:,恒過定點又直線MN斜率不存在時,直線MN:也過,故直線MN過定點.【點睛】數(shù)形結合是數(shù)學解題中常用的思想方法,數(shù)形結合的思想可以使某些抽象的數(shù)學問題直觀化、生動化,能夠變抽象思維為形象思維,有助于把握數(shù)學問題的本質;另外,由于使用了數(shù)形結合的方法,很多問題便迎刃而解,且解法簡捷。22、(1)證明見解析;(2);【解析
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年信息安全違約責任承擔詳細合同范本3篇
- 升學宴演講稿(集合15篇)
- 2024年點煙器連接線項目可行性研究報告
- 2024年嵩明縣人民醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫頻考點附帶答案
- 快遞員與菜鳥驛站月結協(xié)議合同
- 2024年峨山縣人民醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫頻考點附帶答案
- 學生自我鑒定集合15篇
- 2024年中國海里拉魚市場調查研究報告
- 2024年礦燈反射器項目可行性研究報告
- 2025版客運運輸合同服務質量標準3篇
- 南陽名校聯(lián)考八年級生物期末試卷
- 2024年度土地經(jīng)營權流轉與開發(fā)合作合同6篇
- 借用模具合同范例
- 測繪地理信息與地圖編制作業(yè)指導書
- MOOC 藥理學-華中科技大學 中國大學慕課答案
- 略說魯迅全集的五種版本
- 2022年110接警員業(yè)務測試題庫及答案
- DB44∕T 115-2000 中央空調循環(huán)水及循環(huán)冷卻水水質標準
- 嵌入式軟件架構設計
- 《石油天然氣地質與勘探》第3章儲集層和蓋層
- 航道整治課程設計--
評論
0/150
提交評論