版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
安徽省滁州市2024屆高二上數(shù)學(xué)期末聯(lián)考試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.圓與直線的位置關(guān)系是()A.相交 B.相切C.相離 D.不能確定2.已知直線,若直線與垂直,則的傾斜角為()A. B.C. D.3.若一個(gè)正方體的全面積是72,則它的對(duì)角線長(zhǎng)為()A. B.12C. D.64.已知直線是圓的對(duì)稱軸,過點(diǎn)A作圓C的一條切線,切點(diǎn)為B,則|AB|=()A.1 B.2C.4 D.85.已知函數(shù),則下列判斷正確的是()A.直線與曲線相切B.函數(shù)只有極大值,無極小值C.若與互為相反數(shù),則的極值與的極值互為相反數(shù)D.若與互為倒數(shù),則的極值與的極值互為倒數(shù)6.某中學(xué)初中部共有110名教師,高中部共有150名教師,其性別比例如圖所示,則該校男教師的人數(shù)為()A.167 B.137C.123 D.1137.下列四個(gè)命題中為真命題的是()A.設(shè)p:1<x<2,q:2x>1,則p是q的必要不充分條件B.命題“”的否定是“”C.函數(shù)的最小值是4D.與的圖象關(guān)于直線y=x對(duì)稱8.已知實(shí)數(shù),,則下列不等式恒成立的是()A. B.C. D.9.如下圖,邊長(zhǎng)為2的正方體中,O是正方體的中心,M,N,T分別是棱BC,,的中點(diǎn),下列說法錯(cuò)誤的是()A. B.C. D.到平面MON的距離為110.某研究所為了研究近幾年中國(guó)留學(xué)生回國(guó)人數(shù)的情況,對(duì)2014至2018年留學(xué)生回國(guó)人數(shù)進(jìn)行了統(tǒng)計(jì),數(shù)據(jù)如下表:年份20142015201620172018年份代碼12345留學(xué)生回國(guó)人數(shù)/萬36.540.943.348.151.9根據(jù)上述統(tǒng)計(jì)數(shù)據(jù)求得留學(xué)生回國(guó)人數(shù)(單位:萬)與年份代碼滿足的線性回歸方程為,利用回歸方程預(yù)測(cè)年留學(xué)生回國(guó)人數(shù)為()A.63.14萬 B.64.72萬C.66.81萬 D.66.94萬11.已知是雙曲線的左焦點(diǎn),圓與雙曲線在第一象限的交點(diǎn)為,若的中點(diǎn)在雙曲線的漸近線上,則此雙曲線的離心率是()A. B.2C. D.12.如圖,是邊長(zhǎng)為4的等邊三角形的中位線,將沿折起,使得點(diǎn)A與P重合,平面平面,則四棱錐外接球的表面積是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)、分別是橢圓的左、右焦點(diǎn).若是該橢圓上的一個(gè)動(dòng)點(diǎn),則的最大值為_____14.已知數(shù)列是遞增等比數(shù)列,,則數(shù)列的前項(xiàng)和等于.15.圓錐的軸截面是邊長(zhǎng)為2的等邊三角形,為底面中心,為的中點(diǎn),動(dòng)點(diǎn)在圓錐底面內(nèi)(包括圓周).若,則點(diǎn)形成的軌跡的長(zhǎng)度為______16.已知等比數(shù)列的前n和為,若成等差數(shù)列,且,,則的值為_______________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓心為的圓,滿足下列條件:圓心在軸上,與直線相切,且被軸截得的弦長(zhǎng)為,圓的面積小于(1)求圓的標(biāo)準(zhǔn)方程;(2)設(shè)過點(diǎn)的直線與圓交于不同的兩點(diǎn)、,以、為鄰邊作平行四邊形.是否存在這樣的直線,使得直線與恰好平行?如果存在,求出的方程,如果不存在,請(qǐng)說明理由18.(12分)如圖所示,在三棱柱中,平面,,,,點(diǎn),分別在棱和棱上,且,,點(diǎn)為棱的中點(diǎn).(1)求證:平面;(2)求直線與平面所成角的正弦值.19.(12分)已知,是函數(shù)的兩個(gè)極值點(diǎn).(1)求的解析式;(2)記,,若函數(shù)有三個(gè)零點(diǎn),求的取值范圍.20.(12分)已知函數(shù)的圖象在點(diǎn)P(0,f(0))處的切線方程是(1)求a、b的值;(2)求函數(shù)的極值.21.(12分)如圖,四棱柱的底面為正方形,平面,,,點(diǎn)在上,且.(1)求證:;(2)求直線與平面所成角的正弦值;(3)求平面與平面夾角的余弦值.22.(10分)已知P,Q的坐標(biāo)分別為,,直線PM,QM相交于點(diǎn)M,且它們的斜率之積是.設(shè)點(diǎn)M的軌跡為曲線C.(1)求曲線的方程;(2)設(shè)為坐標(biāo)原點(diǎn),圓的半徑為1,直線:與圓相切,且與曲線交于不同的兩點(diǎn)A,B.當(dāng),且滿足時(shí),求面積的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】用圓心到直線的距離與半徑的大小判斷【詳解】解:圓的圓心到直線的距離,等于圓的半徑,所以圓與直線相切,故選:B2、D【解析】由直線與垂直得到的斜率,再利用斜率與傾斜角的關(guān)系即可得到答案.【詳解】因?yàn)橹本€與垂直,且,所以,解得,設(shè)的傾斜角為,,所以.故選:D3、D【解析】根據(jù)全面積得到正方體的棱長(zhǎng),再由勾股定理計(jì)算對(duì)角線.【詳解】設(shè)正方體的棱長(zhǎng)為,對(duì)角線長(zhǎng)為,則有,解得,從而,解得.故選:D4、C【解析】首先將圓心坐標(biāo)代入直線方程求出參數(shù)a,求得點(diǎn)A的坐標(biāo),由切線與圓的位置關(guān)系構(gòu)造直角三角形從而求得.【詳解】圓即,圓心為,半徑為r=3,由題意可知過圓的圓心,則,解得,點(diǎn)A坐標(biāo)為,,切點(diǎn)為B則,故選:C【點(diǎn)睛】本題考查直線與圓的位置關(guān)系,屬于基礎(chǔ)題.5、C【解析】求出函數(shù)的導(dǎo)函數(shù),通過在某點(diǎn)處的導(dǎo)數(shù)為該點(diǎn)處切線的斜率,求出切線方程,并且判斷出極值,通過結(jié)合與互為相反數(shù),若與互為倒數(shù),分別判斷的極值與的極值是否互為相反數(shù),以及是否互為倒數(shù).【詳解】,,令,得,所以,因?yàn)?,,所以曲線在點(diǎn)處的切線方程為,故A錯(cuò);當(dāng)時(shí),存在使,且當(dāng)時(shí),;當(dāng)時(shí),,即有極小值,無極大值,故B錯(cuò)誤;設(shè)為的極值點(diǎn),則,且,所以,,當(dāng)時(shí),;當(dāng)時(shí),,故C正確,D錯(cuò)誤.6、C【解析】根據(jù)圖形分別求出初中部和高中部男教師的人數(shù),最后相加即可.【詳解】初中部男教師的人數(shù)為110×(170%)=33;高中部男教師的人數(shù)為150×60%=90,∴該校男教師的人數(shù)為33+90=123.故選:C.7、D【解析】根據(jù)推出關(guān)系和集合的包含關(guān)系判斷A,根據(jù)全稱命題的否定形式可判斷B,根據(jù)對(duì)鉤函數(shù)性質(zhì)即三角函數(shù)的性質(zhì)可判斷C,根據(jù)反函數(shù)的圖像性質(zhì)可判斷D.【詳解】解:對(duì)于選項(xiàng)A:是的真子集,所以命題p是q的充分不必要條件,故A錯(cuò)誤;對(duì)于選項(xiàng)B:命題“”的否定是“”,故B錯(cuò)誤;對(duì)于選項(xiàng)C:函數(shù),當(dāng)時(shí),,函數(shù)單調(diào)遞減,當(dāng)時(shí)取最小值,故C錯(cuò)誤;對(duì)于選項(xiàng)D:與互為反函數(shù),故圖象關(guān)于直線y=x對(duì)稱,故D正確.8、C【解析】根據(jù)不等式性質(zhì)和作差法判斷大小依次判斷每個(gè)選項(xiàng)得到答案.【詳解】當(dāng)時(shí),不等式不成立,錯(cuò)誤;,故錯(cuò)誤正確;當(dāng)時(shí),不等式不成立,錯(cuò)誤;故選:.【點(diǎn)睛】本題考查了不等式的性質(zhì),作差法判斷大小,意在考查學(xué)生對(duì)于不等式知識(shí)的綜合應(yīng)用.9、D【解析】建立空間直角坐標(biāo)系,進(jìn)而根據(jù)空間向量的坐標(biāo)運(yùn)算判斷A,B,C;對(duì)D,算出平面MON的法向量,進(jìn)而求出向量在該法向量方向上投影的絕對(duì)值,即為所求距離.【詳解】如圖建立空間直角坐標(biāo)系,則.對(duì)A,,則,則A正確;對(duì)B,,則,則B正確;對(duì)C,,則C正確;對(duì)D,設(shè)平面MON的法向量為,則,取z=1,得,,所以到平面MON的距離為,則D錯(cuò)誤.故選:D.10、D【解析】先求出樣本點(diǎn)的中心,代入線性回歸方程即可求出,再將代入線性回歸方程即可得到結(jié)果【詳解】由題意知:,,所以樣本點(diǎn)的中心為,所以,解得:,可得線性回歸方程為,年對(duì)應(yīng)的年份代碼為,令,則,所以預(yù)測(cè)2022年留學(xué)生回國(guó)人數(shù)為66.94萬,故選:D.11、A【解析】根據(jù)雙曲線的幾何性質(zhì)和平面幾何性質(zhì),建立關(guān)于a,b,c的方程,從而可求得雙曲線的離心率得選項(xiàng).【詳解】由題意可設(shè)右焦點(diǎn)為,因?yàn)?,且圓:,所以點(diǎn)在以焦距為直徑的圓上,則,設(shè)的中點(diǎn)為點(diǎn),則為的中位線,所以,則,又點(diǎn)在漸近線上,所以,且,則,,所以,所以,則在中,可得,,即,解得,所以,故選:A【點(diǎn)睛】方法點(diǎn)睛:(1)求雙曲線的離心率時(shí),將提供的雙曲線的幾何關(guān)系轉(zhuǎn)化為關(guān)于雙曲線基本量的方程或不等式,利用和轉(zhuǎn)化為關(guān)于e的方程或不等式,通過解方程或不等式求得離心率的值或取值范圍(2)對(duì)于焦點(diǎn)三角形,要注意雙曲線定義的應(yīng)用,運(yùn)用整體代換的方法可以減少計(jì)算量12、A【解析】分別取的中點(diǎn),易得,則點(diǎn)為四邊形的外接圓的圓心,則四棱錐外接球的球心在過點(diǎn)且垂直平面的直線上,設(shè)球心為,設(shè)外接球的半徑為,,利用勾股定理求得半徑,從而可得出答案.【詳解】解:分別取的中點(diǎn),在等邊三角形中,,是中位線,則都是等邊三角形,所以,所以點(diǎn)為四邊形的外接圓的圓心,則四棱錐外接球的球心在過點(diǎn)且垂直平面的直線上,設(shè)球心為,由為的中點(diǎn),所以,因?yàn)槠矫嫫矫?,且平面平面,平面,所以平面,則,設(shè)外接球半徑為,,,則,,所以,解得,所以,所以四棱錐外接球的表面積是.故選:A.第II卷二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】設(shè),寫出、的坐標(biāo),利用向量數(shù)量積的坐標(biāo)表示有,根據(jù)橢圓的有界性即可求的最大值.【詳解】由題意知:,,若,∴,,∴,而,則,而,∴當(dāng)時(shí),.故答案為:【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:利用向量數(shù)量積的坐標(biāo)表示及橢圓的有界性求最值.14、【解析】由題意,,解得或者,而數(shù)列是遞增的等比數(shù)列,所以,即,所以,因而數(shù)列的前項(xiàng)和,故答案為.考點(diǎn):1.等比數(shù)列的性質(zhì);2.等比數(shù)列的前項(xiàng)和公式.15、【解析】建立空間直角坐標(biāo)系設(shè),,,,于是,,因?yàn)?,所以,從而,,此為點(diǎn)形成的軌跡方程,其在底面圓盤內(nèi)的長(zhǎng)度為16、107【解析】根據(jù)等比數(shù)列和等差數(shù)列的通項(xiàng)公式,根據(jù)題意列方程可得,從而求出或,再根據(jù),確定,進(jìn)而求出,代入記得:.【詳解】由題意可設(shè)等比數(shù)列的公比為,首項(xiàng)為,由成等差數(shù)列可得:,代入可得:,解得:或,又因?yàn)?,易知,又因?yàn)?,,所以,,故答案為?07.【點(diǎn)睛】本題考查了等差中項(xiàng)和等比數(shù)列的通項(xiàng)公式,考查了和的關(guān)系,同時(shí)考查了計(jì)算能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)不存在,理由見解析.【解析】(1)設(shè)圓心,設(shè)圓的半徑為,可得出,根據(jù)已知條件可得出關(guān)于實(shí)數(shù)的方程,求出的值,可得出的值,進(jìn)而可得出圓的標(biāo)準(zhǔn)方程;(2)分析可知直線的斜率存在,可設(shè)直線的方程為,設(shè)點(diǎn)、,將直線的方程與圓的方程聯(lián)立,由可求得的取值范圍,列出韋達(dá)定理,分析可得,可求得點(diǎn)的坐標(biāo),由已知可得出,求出的值,檢驗(yàn)即可得出結(jié)論.【小問1詳解】解:設(shè)圓心,設(shè)圓的半徑為,則,由題意可得,由勾股定理可得,則,由題意可得,解得,則,因此,圓的標(biāo)準(zhǔn)方程為.【小問2詳解】解:若直線的斜率不存在,此時(shí)直線與軸重合,則、、三點(diǎn)共線,不合乎題意.所以,直線的斜率存在,可設(shè)直線的方程為,設(shè)點(diǎn)、,聯(lián)立,可得,,解得或,由韋達(dá)定理可得,,則,因?yàn)樗倪呅螢槠叫兴倪呅?,則,因?yàn)?,則,則,解得,因?yàn)榛?,因此,不存直線,使得直線與恰好平行.18、(1)證明見解析(2)【解析】(1)構(gòu)建空間直角坐標(biāo)系,由已知確定相關(guān)點(diǎn)坐標(biāo),進(jìn)而求的方向向量、面的法向量,并應(yīng)用坐標(biāo)計(jì)算空間向量的數(shù)量積,即可證結(jié)論.(2)求的方向向量,結(jié)合(1)中面的法向量,應(yīng)用空間向量夾角的坐標(biāo)表示求直線與平面所成角的正弦值.【小問1詳解】以為原點(diǎn),以,,為軸、軸、軸的正方向建立空間直角坐標(biāo)系,如圖所示,可得:,,,,,,,.∴,,,設(shè)為面的法向量,則,令得,∴,即,∴平面;【小問2詳解】由(1)知:,為面的一個(gè)法向量,設(shè)與平面所成角為,則,∴直線與平面所成角的正弦值為.19、(1);(2)【解析】(1)根據(jù)極值點(diǎn)的定義,可知方程的兩個(gè)解即為,,代入即得結(jié)果;(2)根據(jù)題意,將方程轉(zhuǎn)化為,則函數(shù)與直線在區(qū)間,上有三個(gè)交點(diǎn),進(jìn)而求解的取值范圍【詳解】解:(1)因?yàn)?,所以根?jù)極值點(diǎn)定義,方程的兩個(gè)根即為,,,代入,,可得,解之可得,,故有;(2)根據(jù)題意,,,,根據(jù)題意,可得方程在區(qū)間,內(nèi)有三個(gè)實(shí)數(shù)根,即函數(shù)與直線在區(qū)間,內(nèi)有三個(gè)交點(diǎn),又因?yàn)?,則令,解得;令,解得或,所以函數(shù)在,上單調(diào)遞減,在上單調(diào)遞增;又因?yàn)?,,,,函?shù)圖象如下所示:若使函數(shù)與直線有三個(gè)交點(diǎn),則需使,即20、(1);(2)答案見解析【解析】(1)求出曲線的斜率,切點(diǎn)坐標(biāo),求出函數(shù)的導(dǎo)數(shù),利用導(dǎo)函數(shù)值域斜率的關(guān)系,即可求出,(2)求出導(dǎo)函數(shù)的符號(hào),判斷函數(shù)的單調(diào)性即可得到函數(shù)的極值【詳解】(1)因?yàn)楹瘮?shù)的圖象在點(diǎn)P(0,f(0))處的切線方程是,所以切線斜率是,且,求得,即點(diǎn)又函數(shù),則所以依題意得解得(2)由(1)知所以令,解得或當(dāng),或;當(dāng),所以函數(shù)的單調(diào)遞增區(qū)間是,,單調(diào)遞減區(qū)間是所以當(dāng)變化時(shí),和變化情況如下表:0極大值極小值所以,21、(1)證明見解析(2)(3)【解析】(1)以為原點(diǎn),所在的直線為軸的正方向建立空間直角坐標(biāo)系,求出平面的一個(gè)法向量可得,即平面,再由線面垂直的性質(zhì)可得答案;(2)設(shè)直線與平面所成角的為,可得答案;(3)由二面角的向量求法可得答
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 果園經(jīng)營(yíng)權(quán)轉(zhuǎn)讓合同模板
- 個(gè)人與公司間借款協(xié)議書范本2024年
- 婚前財(cái)產(chǎn)協(xié)議書公證流程
- 展覽延期協(xié)議書范本
- 自由職業(yè)者合作工作室合伙協(xié)議
- 房屋中介服務(wù)協(xié)議書樣式
- 設(shè)計(jì)合同補(bǔ)充協(xié)議范本
- 瀝青運(yùn)輸合同模板
- 建筑施工合同補(bǔ)充協(xié)議模板
- 合作試驗(yàn)協(xié)議
- 草原牧歌-鴻雁 課件 2024-2025學(xué)年人音版(簡(jiǎn)譜)(2024)初中音樂七年級(jí)上冊(cè)
- 期中模擬試卷(1-4單元)(試題)-2024-2025學(xué)年五年級(jí)上冊(cè)數(shù)學(xué)人教版
- 期中測(cè)試卷(1-3單元)(試題)-2024-2025學(xué)年六年級(jí)上冊(cè)數(shù)學(xué)蘇教版
- 小學(xué)數(shù)學(xué)西南師大五年級(jí)上冊(cè)四小數(shù)混合運(yùn)算小數(shù)混合運(yùn)算 PPT
- 學(xué)生操行扣分記錄統(tǒng)計(jì)表
- 服裝專業(yè)英語綜合詞匯
- FIT與PPM轉(zhuǎn)換
- 燈飾中英文術(shù)語
- 提高出院病案7天回收率PDCA持續(xù)改進(jìn)方案
- 小學(xué)數(shù)學(xué)教學(xué)中有效情境的創(chuàng)設(shè)與利用案例1
- 《大數(shù)據(jù)導(dǎo)論通識(shí)課版》PPT課件
評(píng)論
0/150
提交評(píng)論