北京市西城區(qū)第14中學2023-2024學年高二上數(shù)學期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
北京市西城區(qū)第14中學2023-2024學年高二上數(shù)學期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
北京市西城區(qū)第14中學2023-2024學年高二上數(shù)學期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
北京市西城區(qū)第14中學2023-2024學年高二上數(shù)學期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
北京市西城區(qū)第14中學2023-2024學年高二上數(shù)學期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

北京市西城區(qū)第14中學2023-2024學年高二上數(shù)學期末質(zhì)量跟蹤監(jiān)視模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,,,則的大小關(guān)系是()A. B.C. D.2.直線與圓相切,則實數(shù)等于()A.或 B.或C.3或5 D.5或33.已知拋物線,過其焦點且斜率為1的直線交拋物線于A,B兩點,若線段AB的中點的橫坐標為3,則該拋物線的準線方程為()A. B.C. D.4.為了了解1200名學生對學校某項教改實驗的意見,打算從中抽取一個容量為40的樣本,采用系統(tǒng)抽樣方法,則分段的間隔為()A.40 B.30C.20 D.125.若,滿足約束條件則的最大值是A.-8 B.-3C.0 D.16.一動圓與圓外切,而與圓內(nèi)切,那么動圓的圓心的軌跡是()A.橢圓 B.雙曲線C.拋物線 D.雙曲線的一支7.已知橢圓C:的左右焦點為F1,F2離心率為,過F2的直線l交C與A,B兩點,若△AF1B的周長為,則C的方程為A. B.C. D.8.等差數(shù)列的公差,且,,則的通項公式是()A. B.C. D.9.若函數(shù)的導(dǎo)函數(shù)在區(qū)間上是減函數(shù),則函數(shù)在區(qū)間上的圖象可能是()A. B.C. D.10.下列函數(shù)求導(dǎo)錯誤的是()A.B.C.D.11.已知拋物線,則它的焦點坐標為()A. B.C. D.12.丹麥數(shù)學家琴生(Jensen)是世紀對數(shù)學分析做出卓越貢獻的巨人,特別是在函數(shù)的凸凹性與不等式方面留下了很多寶貴的成果.設(shè)函數(shù)在上的導(dǎo)函數(shù)為,在上的導(dǎo)函數(shù)為,在上恒成立,則稱函數(shù)在上為“凹函數(shù)”.則下列函數(shù)在上是“凹函數(shù)”的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)函數(shù)的導(dǎo)函數(shù)為,已知函數(shù),則______.14.直線與圓相交于A,B兩點,則的最小值為__________.15.已知函數(shù),若關(guān)于的不等式恒成立,則實數(shù)的取值范圍是__________16.已知點P是拋物線上的一個動點,則點P到點M(0,2)的距離與點P到該拋物線準線的距離之和的最小值為______________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)求下列函數(shù)導(dǎo)數(shù):(1);(2);18.(12分)在直三棱柱ABC﹣A1B1C1中,AB⊥AC,AB=AC=2,A1A=4,點D是BC的中點;(I)求異面直線A1B,AC1所成角的余弦值;(II)求直線AB1與平面C1AD所成角的正弦值19.(12分)已知函數(shù)在處的切線垂直于直線.(1)求(2)求的單調(diào)區(qū)間20.(12分)已知函數(shù)f(x)=(1)求函數(shù)f(x)在x=1處的切線方程;(2)求證:21.(12分)分別求滿足下列條件的曲線方程(1)以橢圓的短軸頂點為焦點,且離心率為的橢圓方程;(2)過點,且漸近線方程為的雙曲線的標準方程22.(10分)已知雙曲線(1)若,求雙曲線的焦點坐標、頂點坐標和漸近線方程;(2)若雙曲線的離心率為,求實數(shù)的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】利用微積分基本定理計算,利用積分的幾何意義求扇形面積得到,然后比較大小.【詳解】,表示以原點為圓心,半徑為2的圓在第二象限的部分的面積,∴;,∵e=2.71828…>2.7,,,,故選:2、C【解析】先求出圓的圓心和半徑,再利用圓心到直線的距離等于半徑列方程可求得結(jié)果【詳解】由,得,則圓心為,半徑為2,因為直線與圓相切,所以,得,解得或,故選:C3、B【解析】設(shè),進而根據(jù)題意,結(jié)合中點弦的問題得,進而再求解準線方程即可.【詳解】解:根據(jù)題意,設(shè),所以①,②,所以,①②得:,即,因為直線AB的斜率為1,線段AB的中點的橫坐標為3,所以,即,所以拋物線,準線方程為.故選:B4、B【解析】根據(jù)系統(tǒng)抽樣的概念,以及抽樣距的求法,可得結(jié)果.【詳解】由總數(shù)為1200,樣本容量為40,所以抽樣距為:故選:B【點睛】本題考查系統(tǒng)抽樣的概念,屬基礎(chǔ)題.5、C【解析】作出可行域,把變形為,平移直線過點時,最大.【詳解】作出可行域如圖:由得:,作出直線,平移直線過點時,.故選C.【點睛】本題主要考查了簡單線性規(guī)劃問題,屬于中檔題.6、A【解析】依據(jù)定義法去求動圓的圓心的軌跡即可解決.【詳解】設(shè)動圓的半徑為r,又圓半徑為1,圓半徑為8,則,,可得,又則動圓的圓心的軌跡是以為焦點長軸長為9的橢圓.故選:A7、A【解析】若△AF1B的周長為4,由橢圓的定義可知,,,,,所以方程為,故選A.考點:橢圓方程及性質(zhì)8、C【解析】由于數(shù)列為等差數(shù)列,所以,再由可得可以看成一元二次方程的兩個根,由可知,所以,從而可求出,可得到通項公式.【詳解】解:因為數(shù)列為等差數(shù)列,所以,因為,所以可以看成一元二次方程的兩個根,因為,所以,所以,解得,所以故選:C【點睛】此題考查的是等差數(shù)列的通項公式和性質(zhì),屬于基礎(chǔ)題.9、A【解析】根據(jù)導(dǎo)數(shù)概念和幾何意義判斷【詳解】由題意得,圖象上某點處的切線斜率隨增大而減小,滿足要求的只有A故選:A10、C【解析】每一個選項根據(jù)求導(dǎo)公式及法則來運算即可判斷.【詳解】對于A,,正確;對于B,,正確;對于C,,不正確;對于D,,正確.故選:C11、D【解析】將拋物線方程化標準形式后得到焦準距,可得結(jié)果.【詳解】由得,所以,所以,所以拋物線的焦點坐標為.故選:D.【點睛】關(guān)鍵點點睛:將拋物線方程化為標準形式是解題關(guān)鍵.12、B【解析】根據(jù)“凹函數(shù)”的定義逐項驗證即可解出【詳解】對A,,當時,,所以A錯誤;對B,,在上恒成立,所以B正確;對C,,,所以C錯誤;對D,,,因為,所以D錯誤故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】首先求出函數(shù)的導(dǎo)函數(shù),再令代入計算可得;【詳解】解:因為,所以,所以,解得;故答案為:14、【解析】直線過定點,圓心,當時,取得最小值,再由勾股定理即可求解.【詳解】由,得,由,得直線過定點,且在圓的內(nèi)部,由圓可得圓心,半徑,當時,取得最小值,圓心與定點的距離為,則的最小值為.故答案為:.15、【解析】分析:應(yīng)用換元法,令,,不等式恒成立,轉(zhuǎn)化為在恒成立,確定關(guān)系式,即可求得答案.詳解:函數(shù)對稱軸,最小值令,則恒成立,即在上.,在單調(diào)遞增,,解得,即實數(shù)的取值范圍是故答案為.點睛:本題考查了函數(shù)的單調(diào)性、最值問題、不等式恒成立問題以及二次函數(shù)的圖象和性質(zhì)等知識,考查了復(fù)合函數(shù)問題求解的換元法16、【解析】由拋物線的定義得:,所以,當三點共線時,最小可得答案.【詳解】如圖所示:,由拋物線的定義得:,所以,由圖象知:當三點共線時,最小,.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】根據(jù)基本初等函數(shù)的導(dǎo)數(shù)公式以及導(dǎo)數(shù)的運算法則計算可得;【詳解】解:(1)因為所以,即(2)因為所以,即18、(I)(II)【解析】(I)以,,為x,y,z軸建立空間直角坐標系A(chǔ)﹣xyz,可得和的坐標,可得cos<,>,可得答案;(II)由(I)知,=(2,0,﹣4),=(1,1,0),設(shè)平面C1AD的法向量為=(x,y,z),由可得=(1,﹣1,),設(shè)直線AB1與平面C1AD所成的角為θ,則sinθ=|cos<,>|=,進而可得答案解:(I)以,,x,y,z軸建立空間直角坐標系A(chǔ)﹣xyz,則可得B(2,0,0),A1(0,0,4),C1(0,2,4),D(1,1,0),∴=(2,0,﹣4),=(0,2,4),∴cos<,>==∴異面直線A1B,AC1所成角的余弦值為:;(II)由(I)知,=(2,0,﹣4),=(1,1,0),設(shè)平面C1AD的法向量為=(x,y,z),則可得,即,取x=1可得=(1,﹣1,),設(shè)直線AB1與平面C1AD所成的角為θ,則sinθ=|cos<,>|=∴直線AB1與平面C1AD所成角的正弦值為:考點:異面直線及其所成的角;直線與平面所成的角19、(1);(2)在內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增【解析】(1)由題意求導(dǎo)可得,代入可得(1),從而求,進而求切線方程;(2)的定義域為,,從而求單調(diào)性【詳解】解:(1)因為在處切線垂直于,所以(2)因為的定義域為當時,當時,在內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增【點睛】本題考查導(dǎo)數(shù)的幾何意義,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,屬于基礎(chǔ)題.20、(1)y=5x-1;(2)證明見解析【解析】(1)求出導(dǎo)函數(shù),求出切線的斜率,切點坐標,然后求切線方程(2)不等式化簡為.設(shè),求出導(dǎo)函數(shù),判斷函數(shù)的單調(diào)性求解函數(shù)的最值,然后證明即可【詳解】解:(1)的定義域為,的導(dǎo)數(shù)由(1)可得,則切點坐標為,所求切線方程為(2)證明:即證.設(shè),則,由,得當時,;當時,在上單調(diào)遞增,在上單調(diào)遞減,(1),即不等式成立,則原不等式成立21、(1)(2)【解析】(1)由題意得出的值后寫橢圓方程(2)待定系數(shù)法設(shè)方程,由題意列方程求解【小問1詳解】的短軸頂點為(0,-3),(0,3),∴所求橢圓的焦點在y軸上,且c=3又,∴a=6.∴∴所求橢圓方程為【小問2詳解】根據(jù)雙曲線漸近線方程為,可設(shè)雙曲線的方程,把代入得m=1.所以雙曲線的方程為22、(1)焦點坐標為,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論