版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
福建省福州市閩侯八中2023-2024學(xué)年高二上數(shù)學(xué)期末監(jiān)測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列的前n項和為,,,則()A. B.C. D.2.?dāng)?shù)列中,,,若,則()A.2 B.3C.4 D.53.已知拋物線的焦點為,準(zhǔn)線為,是上一點,是直線與拋物線的一個交點,若,則()A. B.3C. D.24.定義在區(qū)間上的函數(shù)滿足:對恒成立,其中為的導(dǎo)函數(shù),則A.B.C.D.5.若a>b,c>d,則下列不等式中一定正確的是()A. B.C. D.6.函數(shù)的圖像大致是()A. B.C. D.7.已知函數(shù),當(dāng)時,函數(shù)在,上均為增函數(shù),則的取值范圍是A. B.C. D.8.設(shè)命題,,則為()A., B.,C., D.,9.若,則下列不等式不能成立是()A. B.C. D.10.已知拋物線y2=2px(p>0)的焦點為F,準(zhǔn)線為l,M是拋物線上一點,過點M作MN⊥l于N.若△MNF是邊長為2的正三角形,則p=()A. B.C.1 D.211.已知函數(shù)在定義域內(nèi)單調(diào)遞減,則實數(shù)的取值范圍是()A. B.C. D.12.下列事件:①連續(xù)兩次拋擲同一個骰子,兩次都出現(xiàn)2點;②某人買彩票中獎;③從集合中任取兩個不同元素,它們的和大于2;④在標(biāo)準(zhǔn)大氣壓下,水加熱到90℃時會沸騰.其中是隨機事件的個數(shù)是()A.1 B.2C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)是橢圓上一點,分別是橢圓的左、右焦點,若,則的大小_____.14.如圖,在直棱柱中,,則異面直線與所成角的余弦值為___________.15.下列說法中,正確的有_________(填序號).①“”是“方程表示橢圓”的必要而不充分條件;②若:,則:;③“,”的否定是“,”;④若命題“”為假命題,則命題一定是假命題;⑤是直線:和直線:垂直的充要條件.16.若復(fù)數(shù)滿足,則_____三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某公司舉辦捐步公益活動,參與者通過捐贈每天運動步數(shù)獲得公司提供的牛奶,再將牛奶捐贈給留守兒童.此活動不但為公益事業(yè)作出了較大的貢獻(xiàn),還為公司獲得了相應(yīng)的廣告效益,據(jù)測算,首日參與活動人數(shù)為5000人,以后每天人數(shù)比前一天都增加15%,30天后捐步人數(shù)穩(wěn)定在第30天的水平,假設(shè)此項活動的啟動資金為20萬元,每位捐步者每天可以使公司收益0.05元(以下人數(shù)精確到1人,收益精確到1元)(1)求活動開始后第5天的捐步人數(shù),及前5天公司的捐步總收益;(2)活動開始第幾天以后公司的捐步總收益可以收回啟動資金并有盈余?18.(12分)已知橢圓,離心率為,短半軸長為1(1)求橢圓C的方程;(2)已知直線,問:在橢圓C上是否存在點T,使得點T到直線l的距離最大?若存在,請求出這個最大距離;若不存在,請說明理由19.(12分)已知動點在橢圓:()上,,為橢圓左、右焦點.過點作軸的垂線,垂足為,點滿足,且點的軌跡是過點的圓(1)求橢圓方程;(2)過點,分別作平行直線和,設(shè)交橢圓于點,,交橢圓于點,,求四邊形的面積的最大值20.(12分)在如圖所示的多面體中,且,,,且,,且,平面,(1)求證:;(2)求平面與平面夾角的余弦值21.(12分)已知函數(shù).(1)記函數(shù),當(dāng)時,討論函數(shù)的單調(diào)性;(2)設(shè),若存在兩個不同的零點,證明:為自然對數(shù)的底數(shù)).22.(10分)在平面直角坐標(biāo)系中,已知雙曲線C的焦點為、,實軸長為.(1)求雙曲線C的標(biāo)準(zhǔn)方程;(2)過點的直線l與曲線C交于M,N兩點,且Q恰好為線段的中點,求直線l的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)給定遞推公式求出即可計算作答.【詳解】因數(shù)列的前n項和為,,,則,,,所以.故選:D2、C【解析】由已知得數(shù)列是以2為首項,以2為公比的等比數(shù)列,求出,再利用等比數(shù)列求和可得答案.【詳解】∵,∴,所以,數(shù)列是以2為首項,以2為公比的等比數(shù)列,則,∴,∴,則,解得.故選:C.3、D【解析】根據(jù)拋物線的定義求得,由此求得的長.【詳解】過作,垂足為,設(shè)與軸交點為.根據(jù)拋物線的定義可知.由于,所以,所以,所以,所以.故選:D【點睛】本小題主要考查拋物線定義,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.4、D【解析】分別構(gòu)造函數(shù),,,,利用導(dǎo)數(shù)研究其單調(diào)性即可得出【詳解】令,,,,恒成立,,,,函數(shù)在上單調(diào)遞增,,令,,,,恒成立,,函數(shù)在上單調(diào)遞減,,.綜上可得:,故選:D【點睛】函數(shù)的性質(zhì)是高考的重點內(nèi)容,本題考查的是利用函數(shù)的單調(diào)性比較大小的問題,通過題目中給定的不等式,分別構(gòu)造兩個不同的函數(shù)求導(dǎo)判出單調(diào)性從而比較函數(shù)值得大小關(guān)系.在討論函數(shù)的性質(zhì)時,必須堅持定義域優(yōu)先的原則.對于函數(shù)實際應(yīng)用問題,注意挖掘隱含在實際中的條件,避免忽略實際意義對定義域的影響5、B【解析】根據(jù)不等式的性質(zhì)及反例判斷各個選項.【詳解】因為c>d,所以,所以,所以B正確;時,不滿足選項A;時,,且,所以不滿足選項CD;故選:B6、B【解析】由導(dǎo)數(shù)判斷函數(shù)的單調(diào)性及指數(shù)的增長趨勢即可判斷.【詳解】當(dāng)時,,∴在上單調(diào)遞增,當(dāng)時,,∴在上單調(diào)遞減,排除A、D;又由指數(shù)函數(shù)增長趨勢,排除C.故選:B7、A【解析】由,函數(shù)在上均為增函數(shù),恒成立,,設(shè),則,又設(shè),則滿足線性約束條件,畫出可行域如圖所示,由圖象可知在點取最大值為,在點取最小值.則的取值范圍是,故答案選A考點:利用導(dǎo)數(shù)研究函數(shù)的性質(zhì),簡單的線性規(guī)劃8、B【解析】全稱命題的否定時特稱命題,把任意改為存在,把結(jié)論否定.【詳解】命題,,則為“,”.故選:B9、C【解析】利用不等式的性質(zhì)可判斷ABD,利用賦值法即可判斷C,如.【詳解】解:因為,所以,所以,,,故ABD正確;對于C,若,則,故C錯誤.故選:C.10、C【解析】根據(jù)正三角形的性質(zhì),結(jié)合拋物線的性質(zhì)進(jìn)行求解即可.【詳解】如圖所示:準(zhǔn)線l與橫軸的交點為,由拋物線的性質(zhì)可知:,因為若△MNF是邊長為2的正三角形,所以,,顯然,在直角三角形中,,故選:C11、D【解析】由題意轉(zhuǎn)化為,恒成立,參變分離后轉(zhuǎn)化為,求函數(shù)的最大值,即可求解.【詳解】函數(shù)的定義域是,,若函數(shù)在定義域內(nèi)單調(diào)遞減,即在恒成立,所以,恒成立,即設(shè),,當(dāng)時,函數(shù)取得最大值1,所以.故選:D12、B【解析】因為隨機事件指的是在一定條件下,可能發(fā)生,也可能不發(fā)生的事件,只需逐一判斷4個事件哪一個符合這種情況即可【詳解】解:連續(xù)兩次拋擲同一個骰子,兩次都出現(xiàn)2點這一事件可能發(fā)生也可能不發(fā)生,①是隨機事件某人買彩票中獎這一事件可能發(fā)生也可能不發(fā)生,②是隨機事件從集合,2,中任取兩個元素,它們的和必大于2,③是必然事件在標(biāo)準(zhǔn)大氣壓下,水加熱到時才會沸騰,④是不可能事件故隨機事件有2個,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】,,利用橢圓的定義、結(jié)合余弦定理、已知條件,可得,解得,從而可得結(jié)果【詳解】橢圓,可得,設(shè),,可得,化簡可得:,,故答案為【點睛】本題主要考查橢圓的定義以及余弦定理的應(yīng)用,屬于中檔題.對余弦定理一定要熟記兩種形式:(1);(2),同時還要熟練掌握運用兩種形式的條件.另外,在解與三角形、三角函數(shù)有關(guān)的問題時,還需要記住等特殊角的三角函數(shù)值,以便在解題中直接應(yīng)用.14、【解析】建立空間直角坐標(biāo)系后求相關(guān)的向量后再用夾角公式運算即可.【詳解】如圖,以C為坐標(biāo)原點,所在直線為x,y,z軸,建立空間直角坐標(biāo)系,則,所以,所以,故異面直線與所成角的余弦值為,故答案為:.15、①【解析】根據(jù)橢圓方程的結(jié)構(gòu)特征可判斷①;注意到分式不等式分母不等于0可判斷②;由全稱命題的否定可判斷③;根據(jù)復(fù)合命題的真假可判斷④;由直線垂直的充要條件可判斷⑤.【詳解】①中,當(dāng)時,方程為,表示圓,若方程表示橢圓,則,解得或,故①正確;②中,,故為:,而,故②不正確;③中,“,”的否定應(yīng)為“,”,故③不正確;④中,若命題“”為假命題,有可能為真或為假,故④不正確;⑤中,,解得或,故是直線:和直線:垂直的充分不必要條件,故⑤不正確.故答案為:①16、【解析】設(shè),則,利用復(fù)數(shù)相等,求出,的值,結(jié)合復(fù)數(shù)的模長公式進(jìn)行計算即可【詳解】設(shè),則,則由得,即,則,得,則,故答案為【點睛】本題主要考查復(fù)數(shù)模長的計算,利用待定系數(shù)法,結(jié)合復(fù)數(shù)相等求出復(fù)數(shù)是解決本題的關(guān)鍵三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)8745,1686元(2)37天【解析】(1)根據(jù)等比數(shù)列的性質(zhì)求出結(jié)果;(2)對活動天數(shù)進(jìn)行討論,列出不等式求出的范圍即可.【小問1詳解】設(shè)第天的捐步人數(shù)為,則且,∴第5天的捐步人數(shù)為由題意可知前5天的捐步人數(shù)成等比數(shù)列,其中首項為5000,公比為1.15,∴前5天的捐步總收益為元.【小問2詳解】設(shè)活動第天后公司捐步總收益可以回收并有盈余,若,則,解得(舍)若,則,解得∴活動開始后第37天公司的捐步總收益可以收回啟動資金并有盈余.18、(1);(2)存在,最大距離為.,理由見解析【解析】(1)根據(jù)離心率及短軸長求橢圓參數(shù),即可得橢圓方程.(2)根據(jù)直線與橢圓的位置關(guān)系,將問題轉(zhuǎn)為平行于直線且與橢圓相切的切線與直線最大距離,設(shè)直線方程聯(lián)立橢圓方程根據(jù)求參數(shù),進(jìn)而判斷點T的存在性,即可求最大距離.【小問1詳解】由題設(shè)知:且,又,∴,故橢圓C的方程為.小問2詳解】聯(lián)立直線與橢圓,可得:,∴,即直線與橢圓相離,∴只需求平行于直線且與橢圓相切的切線與直線最大距離即為所求,令平行于直線且與橢圓相切的直線為,聯(lián)立橢圓,整理可得:,∴,可得,當(dāng),切線為,其與直線距離為;當(dāng),切線為,其與直線距離為;綜上,時,與橢圓切點與直線距離最大為.19、(1);(2)【解析】(1)設(shè)點和,由題意可得點的軌跡方程,將點Q的坐標(biāo)代入T的方程計算出即可;(2)設(shè)的方程,和,聯(lián)立橢圓方程并消元得到關(guān)于y的一元二次方程,根據(jù)韋達(dá)定理得到,進(jìn)而求出和,根據(jù)平行線間的距離公式可得與的距離,得出所求四邊形面積的表達(dá)式,結(jié)合換元法和基本不等式化簡求值即可.【詳解】解:(1)設(shè)點,,則點,,,∵,∴,∴,∵點在橢圓上,∴,即為點的軌跡方程又∵點的軌跡是過的圓,∴,解得,所以橢圓的方程為(2)由題意,可設(shè)的方程為,聯(lián)立方程,得設(shè),,則,且,所以,同理,又與的距離為,所以,四邊形的面積為,令,則,且,當(dāng)且僅當(dāng),即時等號成立所以,四邊形的面積最大值為20、(1)證明見解析(2)【解析】(1)根據(jù)線面垂直的性質(zhì)可得,,如圖所示,以為坐標(biāo)原點建立空間直角坐標(biāo)系,證明即可得證;(2)求出平面與平面的法向量,再利用向量法即可得解.【小問1詳解】證明:因為平面,平面,平面,所以,且,因為,如圖所示,以為坐標(biāo)原點建立空間直角坐標(biāo)系,則,,,,,,,所以,,,所以;【小問2詳解】,設(shè)平面的法向量為,則,即,令,有,設(shè)平面的法向量為,則,即,令,有,設(shè)平面和平面的夾角為,,所以平面和平面的夾角的余弦值為21、(1)在和上單調(diào)遞增;在上單調(diào)遞減(2)證明見解析【解析】(1)先求導(dǎo),然后對導(dǎo)數(shù)化簡整理后再解不等式即可得單調(diào)性;(2)要證明,通過求函數(shù)的極值可證明,要證,根據(jù)有兩個不同的零點,將問題轉(zhuǎn)化為證明成立,再通過換元從求函數(shù)的最值上證明.【小問1詳解】因為,所以,令,得或.所以時,或;時,.所以在和上單調(diào)遞增;在上單調(diào)遞減.【小問2詳解】因為,所以.當(dāng)時,,可得在上單調(diào)遞減,此時不可能存在兩個不同的零點,不符合題意.當(dāng)時,.令,得.當(dāng)時,;當(dāng)時,.所以在上單調(diào)遞增,在上單調(diào)遞減.而當(dāng)時,,時,.所以要使存在兩個不同的零點,則,即,解得.因為存在兩個不同的零點,則,即.不妨設(shè),則,則,要證,即證,即證,即,.即證,令,則,所以在上單調(diào)遞增,所以,即,所以成立.綜上有.【關(guān)鍵點點睛】解決本題的第(1)問的關(guān)鍵是對導(dǎo)函數(shù)的分子因式分解;解決第(2)問的關(guān)鍵一是分步證明,二是研究函數(shù)的單調(diào)性,三是轉(zhuǎn)化思想的運用,四是換元思想的運用.22、(1)(2).【解析】(1)根據(jù)條件,結(jié)合雙曲線定義即可求得雙曲線的標(biāo)準(zhǔn)方程.(2)當(dāng)斜率不存在時,不符合題意;當(dāng)斜
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度智慧社區(qū)工程質(zhì)量保證合同3篇
- 2025年度物業(yè)服務(wù)合同:某小區(qū)物業(yè)管理公司提供物業(yè)服務(wù)協(xié)議3篇
- 二零二五年度廢舊農(nóng)業(yè)機械買賣及保養(yǎng)維修合同3篇
- 二零二五年度水利工程供水供電安全保障合同3篇
- 2025年度生豬銷售與冷鏈倉儲物流服務(wù)合同3篇
- 海南體育職業(yè)技術(shù)學(xué)院《組成原理與接口技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 翻譯專家課程設(shè)計
- 運營環(huán)境插畫課程設(shè)計
- 2025年初中秋季開學(xué)典禮校長講話稿樣本(3篇)
- 二零二五年度攪拌車運輸項目合作框架協(xié)議
- 整合營銷策劃-標(biāo)準(zhǔn)化模板
- 物業(yè)前期介入與承接查驗要點精講培訓(xùn)
- 四川省廣元市2022-2023學(xué)年八年級上學(xué)期語文期末試卷(含答案)
- 抗震支吊架-檢驗批質(zhì)量驗收記錄
- 【APP違規(guī)收集個人信息的法律問題分析9800字(論文)】
- 商品房預(yù)售合同簽約證明和預(yù)告登記申請書
- 質(zhì)量管理體系成熟度評估表
- 單體調(diào)試及試運方案
- 2023-2024學(xué)年浙江省杭州市城區(qū)數(shù)學(xué)四年級第一學(xué)期期末學(xué)業(yè)水平測試試題含答案
- 五星級酒店市場調(diào)研報告
- 車輛剮蹭私下解決協(xié)議書(3篇)
評論
0/150
提交評論