福建省寧德市普通高中2024屆數(shù)學(xué)高二上期末學(xué)業(yè)水平測試模擬試題含解析_第1頁
福建省寧德市普通高中2024屆數(shù)學(xué)高二上期末學(xué)業(yè)水平測試模擬試題含解析_第2頁
福建省寧德市普通高中2024屆數(shù)學(xué)高二上期末學(xué)業(yè)水平測試模擬試題含解析_第3頁
福建省寧德市普通高中2024屆數(shù)學(xué)高二上期末學(xué)業(yè)水平測試模擬試題含解析_第4頁
福建省寧德市普通高中2024屆數(shù)學(xué)高二上期末學(xué)業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

福建省寧德市普通高中2024屆數(shù)學(xué)高二上期末學(xué)業(yè)水平測試模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.北京大興國際機(jī)場的顯著特點之一是各種彎曲空間的運(yùn)用,在數(shù)學(xué)上用曲率刻畫空間彎曲性.規(guī)定:多面體的頂點的曲率等于與多面體在該點的面角之和的差(多面體的面的內(nèi)角叫做多面體的面角,角度用弧度制),多面體面上非頂點的曲率均為零,多面體的總曲率等于該多面體各頂點的曲率之和.例如:正四面體在每個頂點有個面角,每個面角是,所以正四面體在每個頂點的曲率為,故其總曲率為.給出下列三個結(jié)論:①正方體在每個頂點的曲率均為;②任意四棱錐總曲率均為;③若某類多面體的頂點數(shù),棱數(shù),面數(shù)滿足,則該類多面體的總曲率是常數(shù).其中,所有正確結(jié)論的序號是()A.①② B.①③C.②③ D.①②③2.已知函數(shù)的定義域為,其導(dǎo)函數(shù)為,若,則下列式子一定成立的是()A. B.C. D.3.已知點,若直線與線段沒有公共點,則的取值范圍是()A. B.C. D.4.如圖,空間四邊形OABC中,,,,點M在上,且滿足,點N為BC的中點,則()A. B.C. D.5.《九章算術(shù)》是我國古代的數(shù)學(xué)名著,書中有如下問題:“今有五人分五錢,令上兩人與下三人等,問各得幾何?”其意思為:“已知甲、乙、丙、丁、戊五人分5錢,甲、乙兩人所得之和與丙、丁、戊所得之和相同,且是甲、乙、丙、丁、戊所得以此為等差數(shù)列,問五人各得多少錢?”(“錢”是古代一種重量單位),這個問題中戊所得為()A.錢 B.錢C.錢 D.錢6.設(shè)函數(shù),則曲線在點處的切線方程為()A. B.C. D.7.若直線與圓相切,則()A. B.或2C. D.或8.運(yùn)行如圖所示程序后,輸出的結(jié)果為()A.15 B.17C.19 D.219.設(shè),,,…,,,則()A. B.C. D.10.如圖,在平行六面體中,,則與向量相等的是()A. B.C. D.11.南宋數(shù)學(xué)家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,他所討論的高階等差數(shù)列與一般等差數(shù)列不同,前后兩項之差并不相等,而是逐項差數(shù)之差或者高次差相等.對這類高階等差數(shù)列的研究,在楊輝之后一般稱為“垛積術(shù)”.現(xiàn)有一個高階等差數(shù)列,其前6項分別為1,5,11,21,37,61,則該數(shù)列的第7項為()A.95 B.131C.139 D.14112.從甲地到乙地要經(jīng)過3個十字路口,設(shè)各路口信號燈工作相互獨立,且在各路口遇到紅燈的概率分別為,,,一輛車從甲地到乙地,恰好遇到2個紅燈的概率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè),若,則S=________.14.如圖,已知與所在平面垂直,且,,,點P、Q分別在線段BD、CD上,沿直線PQ將向上翻折,使D與A重合.則直線AP與平面ACQ所成角的正弦值為______15.在正項等比數(shù)列中,,,則的公比為___________.16.已知,是橢圓:的兩個焦點,點在上,則的最大值為________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左、右焦點分別是,點P是橢圓C上任一點,若面積的最大值為,且離心率(1)求C的方程;(2)A,B為C的左、右頂點,若過點且斜率不為0的直線交C于M,N兩點,證明:直線與的交點在一條定直線上18.(12分)如圖,在四棱錐中,四邊形ABCD為正方形,PA⊥底面ABCD,,M,N分別為AB和PC的中點(1)求證:MN//平面PAD;(2)求平面MND與平面PAD的夾角的余弦值19.(12分)已知三個條件①圓心在直線上;②圓的半徑為2;③圓過點在這三個條件中任選一個,補(bǔ)充在下面的問題中,并作答(注:如果選擇多個條件分別解答,按第一個解答計分)(1)已知圓過點且圓心在軸上,且滿足條件________,求圓的方程;(2)在(1)的條件下,直線與圓交于、兩點,求弦長的最小值及相應(yīng)的值20.(12分)已知函數(shù)(1)求的單調(diào)區(qū)間;(2)若,求的最大值與最小值21.(12分)設(shè)函數(shù).(1)求在處的切線方程;(2)求的極小值點和極大值點.22.(10分)已知橢圓的短軸長為2,左、右焦點分別為,,過且垂直于長軸的弦長為1(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)若A,B為橢圓C上位于x軸同側(cè)的兩點,且,共線,求四邊形的面積的最大值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)曲率的定義依次判斷即可.【詳解】①根據(jù)曲率的定義可得正方體在每個頂點的曲率為,故①正確;②由定義可得多面體的總曲率頂點數(shù)各面內(nèi)角和,因為四棱錐有5個頂點,5個面,分別為4個三角形和1個四邊形,所以任意四棱錐的總曲率為,故②正確;③設(shè)每個面記為邊形,則所有的面角和為,根據(jù)定義可得該類多面體的總曲率為常數(shù),故③正確.故選:D.2、B【解析】令,求出函數(shù)的導(dǎo)數(shù),得到函數(shù)的單調(diào)性,即可得到,從而求出答案【詳解】解:令,則,又不等式恒成立,所以,即,所以在單調(diào)遞增,故,即,所以,故選:B3、A【解析】分別求出,即可得到答案.【詳解】直線經(jīng)過定點.因為,所以,所以要使直線與線段沒有公共點,只需:,即.所以的取值范圍是.故選:A4、B【解析】由空間向量的線性運(yùn)算求解【詳解】由題意,又,,,∴,故選:B5、D【解析】根據(jù)題意將實際問題轉(zhuǎn)化為等差數(shù)列的問題即可解決【詳解】解:由題意,可設(shè)甲、乙、丙、丁、戊五人分得的錢分別為,,,,則,,,,成等差數(shù)列,設(shè)公差為,整理上面兩個算式,得:,解得,故選:6、A【解析】利用導(dǎo)數(shù)的幾何意義求解即可【詳解】由,得,所以切線的斜率為,所以切線方程為,即,故選:A7、D【解析】根據(jù)圓心到直線的距離等于半徑列方程即可求解.【詳解】由圓可得圓心,半徑,因為直線與圓相切,所以圓心到直線的距離,整理可得:,所以或,故選:D.8、D【解析】根據(jù)給出的循環(huán)程序進(jìn)行求解,直到滿足,輸出.【詳解】,,,,,,,,,,,,所以.故選:D9、B【解析】根據(jù)已知條件求得的規(guī)律,從而確定正確選項.【詳解】,,,,,……,以此類推,,所以.故選:B10、A【解析】根據(jù)空間向量的線性運(yùn)算法則——三角形法,準(zhǔn)確運(yùn)算,即可求解.【詳解】由題意,在平行六面體中,,可得.故選:A.11、A【解析】利用已知條件,推出數(shù)列的差數(shù)的差組成的數(shù)列是等差數(shù)列,轉(zhuǎn)化求解即可【詳解】由題意可知,1,5,11,21,37,61,……,的差的數(shù)列為4,6,10,16,24,……,則這個數(shù)列的差組成的數(shù)列為:2,4,6,8,……,是一個等差數(shù)列,設(shè)原數(shù)列的第7項為,則,解得,所以原數(shù)列的第7項為95,故選:A12、B【解析】利用相互獨立事件概率乘法公式和互斥事件概率加法公式直接求解【詳解】由各路口信號燈工作相互獨立,可得某人從甲地到乙地恰好遇到2次紅燈的概率:故選:B二、填空題:本題共4小題,每小題5分,共20分。13、1007【解析】可證f(x)+f(1﹣x)=1,由倒序相加法可得所求為1007對的組合,即1007個1,可得答案【詳解】解:∵函數(shù)f(x),∴f(x)+f(1﹣x)1故可得S=f()+f()…+f()=1007×1=1007,故答案為:1007點睛】本題考查倒序相加法求和,推斷出f(x)+f(1﹣x)=1是解題的關(guān)鍵.14、##【解析】取的中點,的中點,以所在直線為軸,以所在直線為軸,以所在直線為軸,建立空間直角坐標(biāo)系,設(shè),根據(jù)求出,再由空間向量的數(shù)量積即可求解.【詳解】取的中點,的中點,如圖以所在直線為軸,以所在直線為軸,以所在直線為軸,建立空間直角坐標(biāo)系,不妨設(shè),則,,,由,即,解得,所以,故,設(shè)為平面ACQ的一個法向量,因為,,由,即,所以,設(shè)直線AP與平面ACQ所成角為,則.故答案為:15、3【解析】由題設(shè)知等比數(shù)列公比,根據(jù)已知條件及等比數(shù)列通項公式列方程求公比即可.【詳解】由題設(shè),等比數(shù)列公比,且,所以,可得或(舍),故公比為3.故答案為:316、9【解析】根據(jù)橢圓的定義可得,結(jié)合基本不等式即可求得的最大值.【詳解】∵在橢圓上∴∴根據(jù)基本不等式可得,即,當(dāng)且僅當(dāng)時取等號.故答案為:9.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析.【解析】(1)用待定系數(shù)法求出橢圓的方程;(2)設(shè)直線MN的方程為x=my+1,設(shè),用“設(shè)而不求法”表示出.由直線AM的方程為,直線BN的方程為,聯(lián)立,解得:,即可證明直線AM與BN的交點在直線上.【小問1詳解】由題意可得:,解得:,所以C的方程為.【小問2詳解】由(1)得A(-2,0),B(2,0),F2(1,0),設(shè)直線MN的方程為x=my+1.設(shè),由,消去y得:,所以.所以.因為直線AM的方程為,直線BN的方程為,二者聯(lián)立,有,所以,解得:,直線AM與BN的交點在直線上.【點睛】(1)待定系數(shù)法可以求二次曲線的標(biāo)準(zhǔn)方程;(2)"設(shè)而不求"是一種在解析幾何中常見的解題方法,可以解決直線與二次曲線相交的問題.18、(1)證明見解析;(2).【解析】(1)在平面中構(gòu)造與平行的直線,利用線線平行推證線面平行即可;(2)以為坐標(biāo)原點建立空間直角坐標(biāo)系,分別求得兩個平面的法向量,利用向量法即可求得兩個平面夾角的余弦值.【小問1詳解】取中點為,連接,如下所示:因為為正方形,為中點,故可得//;在△中,因為分別為的中點,故可得//;故可得//,則四邊形為平行四邊形,即//,又面面,故//面.【小問2詳解】因為面面,故可得,又底面為正方形,故可得,則兩兩垂直;故以為坐標(biāo)原點,以分別為軸建立空間直角坐標(biāo)系如下所示:故可得,設(shè)平面的法向量為,又則,即,不妨取,則,則,取面的法向量為,故.設(shè)平面的夾角為,故可得,即平面MND與平面PAD的夾角的余弦值為.19、(1)條件選擇見解析,圓的方程為(2)的最小值為,相應(yīng)【解析】(1)選擇條件①或②或③,求得圓心和半徑,由此求得圓的方程.(2)首先求得直線過定點,根據(jù)求得最短弦長以及此時的值.【小問1詳解】若選條件①,由題意知,圓心是方程的解,解得,所以,設(shè)半徑為,則.則圓的方程為:若選條件②,設(shè)圓心,由題意知,所以圓心,半徑為,所以圓的方程為:若選條件③,設(shè)圓心,由題意知,即有,解得,圓心為,且半徑為,所以圓的方程為:【小問2詳解】由(1)圓的方程為:,圓心為,半徑.直線過定點,要使弦長最短,,,,,直線的斜率,也即直線的斜率為,所以.,,所以弦長最小值為20、(1)單調(diào)遞增區(qū)間是和,單調(diào)遞減是;(2)函數(shù)的最大值是,函數(shù)的最小值是.【解析】(1)利用導(dǎo)數(shù)和函數(shù)單調(diào)性關(guān)系,求函數(shù)的單調(diào)區(qū)間;(2)利用函數(shù)的單調(diào)性,列表求函數(shù)的最值.【小問1詳解】,當(dāng),解得:或,所以函數(shù)的單調(diào)遞增區(qū)間是和,當(dāng),解得:,所以函數(shù)的單調(diào)遞減區(qū)間是,所以函數(shù)的單調(diào)遞增區(qū)間是和,單調(diào)遞減是;【小問2詳解】由(1)可得下表4單調(diào)遞增單調(diào)遞減單調(diào)遞增所以函數(shù)的最大值是,函數(shù)的最小值是21、(1);(2)極大值點,極小值點.【解析】(1)求函數(shù)的導(dǎo)數(shù),利用函數(shù)的導(dǎo)數(shù)求出切線的斜率,結(jié)合切點坐標(biāo),然后求解切線方程;(2)利用導(dǎo)數(shù)研究f(x)的單調(diào)性,判斷函數(shù)的極值點即可【小問1詳解】函數(shù),函數(shù)的導(dǎo)數(shù)為,,在處的切線方程:,即【小問2詳解】令,,解得,當(dāng)時,可得,即的單調(diào)遞減區(qū)間,或,可得,∴函數(shù)單調(diào)遞增區(qū)間,,的極大值點,極小值點22、(1)(2)2【解析】(1)根據(jù)已知條件求得,由此求得橢圓的標(biāo)準(zhǔn)方程.(2)延長,交橢圓C于點.設(shè)出直線的方程并與橢圓方程聯(lián)立,化簡寫出根與系數(shù)關(guān)系,根據(jù)對稱性求得四邊形的面積的表達(dá)式,利用換元法,結(jié)合

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論