版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
河北省雞澤一中2023年數(shù)學高二上期末聯(lián)考模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在等比數(shù)列中,是和的等差中項,則公比的值為()A.-2 B.1C.2或-1 D.-2或12.若直線的傾斜角為120°,則直線的斜率為()A. B.C. D.3.一質(zhì)點從出發(fā),做勻速直線運動,每秒的速度為秒后質(zhì)點所處的位置為()A. B.C. D.4.在條件下,目標函數(shù)的最大值為2,則的最小值是()A.20 B.40C.60 D.805.已知為虛數(shù)單位,復數(shù)是純虛數(shù),則()A. B.4C.3 D.26.過點P(2,1)作直線l,使l與雙曲線-y2=1有且僅有一個公共點,這樣的直線l共有A.1條 B.2條C.3條 D.4條7.已知雙曲線(,)的左、右焦點分別為,,.若雙曲線M的右支上存在點P,使,則雙曲線M的離心率的取值范圍為()A. B.C. D.8.函數(shù)的圖像大致是()A B.C. D.9.長方體中,,,,為側(cè)面內(nèi)(含邊界)的動點,且滿足,則四棱錐體積的最小值為()A. B.C. D.10.直線分別交坐標軸于A,B兩點,O為坐標原點,三角形OAB的內(nèi)切圓上有動點P,則的最小值為()A.16 B.18C.20 D.2211.設函數(shù),則()A.4 B.5C.6 D.712.若函數(shù)在區(qū)間上有兩個極值點,則實數(shù)的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.等差數(shù)列前項之和為,若,則________14.某工廠的某種型號的機器的使用年限和所支出的維修費用(萬元)有下表的統(tǒng)計資料:23456223.85.56.57.0根據(jù)上表可得回歸直線方程,則=_____.15.已知球的半徑為3,則該球的體積為_________.16.函數(shù)單調(diào)增區(qū)間為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)用長度為80米的護欄圍出一個一面靠墻的矩形運動場地,如圖所示,運動場地的一條邊記為(單位:米),面積記為(單位:平方米)(1)求關于的函數(shù)關系;(2)求的最大值18.(12分)求證:(1)是上的偶函數(shù);(2)是上的奇函數(shù).19.(12分)已知直線經(jīng)過橢圓的右焦點,且橢圓C的離心率為(1)求橢圓C的標準方程;(2)以橢圓的短軸為直徑作圓,若點M是第一象限內(nèi)圓周上一點,過點M作圓的切線交橢圓C于P,Q兩點,橢圓C的右焦點為,試判斷的周長是否為定值.若是,求出該定值20.(12分)已知橢圓的左、右焦點分別是,點P是橢圓C上任一點,若面積的最大值為,且離心率(1)求C的方程;(2)A,B為C的左、右頂點,若過點且斜率不為0的直線交C于M,N兩點,證明:直線與的交點在一條定直線上21.(12分)已知圓,圓.(1)試判斷圓C與圓M的位置關系,并說明理由;(2)若過點的直線l與圓C相切,求直線l的方程.22.(10分)已知橢圓過點,且離心率為.(1)求橢圓的方程;(2)過作斜率分別為的兩條直線,分別交橢圓于點,且,證明:直線過定點.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由題可得,即求.【詳解】由題意,得,所以,因為,所以,解得或.故選:D.2、B【解析】求得傾斜角的正切值即得【詳解】k=tan120°=.故選:B3、A【解析】利用空間向量的線性運算即可求解.【詳解】2秒后質(zhì)點所處的位置為.故選:A【點睛】本題考查了空間向量的線性運算,考查了基本知識掌握的情況以及學生的綜合素養(yǎng),屬于基礎題.4、C【解析】首先畫出可行域,找到最優(yōu)解,得到關系式作為條件,再去求的最小值.【詳解】畫出的可行域,如下圖:由得由得;由得;目標函數(shù)取最大值時必過N點,則則(當且僅當時等號成立)故選:C5、C【解析】化簡復數(shù)得,由其為純虛數(shù)求參數(shù)a,進而求的模即可.【詳解】由純虛數(shù),∴,解得:,則,故選:C6、B【解析】利用幾何法,結(jié)合雙曲線的幾何性質(zhì),得出符合條件的結(jié)論.【詳解】由雙曲線的方程可知其漸近線方程為y=±x,則點P(2,1)在漸近線y=x上,又雙曲線的右頂點為A(2,0),如圖所示.滿足條件的直線l有兩條:x=2,y-1=-(x-2)【點睛】該題考查的是有關直線與雙曲線的公共點有一個的條件,結(jié)合雙曲線的性質(zhì),結(jié)合圖形,得出結(jié)果,屬于中檔題目.7、A【解析】利用三角形正弦定理結(jié)合,用a,c表示出,再由點P的位置列出不等式求解即得.【詳解】依題意,點P不與雙曲線頂點重合,在中,由正弦定理得:,因,于是得,而點P在雙曲線M的右支上,即,從而有,點P在雙曲線M的右支上運動,并且異于頂點,于是有,因此,,而,整理得,即,解得,又,故有,所以雙曲線M的離心率的取值范圍為.故選:A8、B【解析】由函數(shù)有兩個零點排除選項A,C;再借助導數(shù)探討函數(shù)的單調(diào)性與極值情況即可判斷作答.【詳解】由得,或,選項A,C不滿足;由求導得,當或時,,當時,,于是得在和上都單調(diào)遞增,在上單調(diào)遞減,在處取極大值,在處取極小值,D不滿足,B滿足.故選:B9、D【解析】取的中點,以點為坐標原點,、、的方向分別為、、軸的正方向建立空間直角坐標系,分析可知點的軌跡是以點、為焦點的橢圓,求出橢圓的方程,可知當點為橢圓與棱或的交點時,點到平面的距離取最小值,由此可求得四棱錐體積的最小值.【詳解】取的中點,以點為坐標原點,、、的方向分別為、、軸的正方向建立如下圖所示的空間直角坐標系,設點,其中,,則、,因為平面,平面,則,所以,,同理可得,所以,,所以點的軌跡是以點、為焦點,且長軸長為的橢圓的一部分,則,,,所以,點的軌跡方程為,點到平面的距離為,當點為曲線與棱或棱的交點時,點到平面的距離取最小值,將代入方程得,因此,四棱錐體積的最小值為.故選:D.10、B【解析】由題意,求出內(nèi)切圓的半徑和圓心坐標,設,則,由表示內(nèi)切圓上的動點P到定點的距離的平方,從而即可求解最小值.【詳解】解:因為直線分別交坐標軸于A,B兩點,所以設,則,因為,所以三角形OAB的內(nèi)切圓半徑,內(nèi)切圓圓心為,所以內(nèi)切圓的方程為,設,則,因為表示內(nèi)切圓上的動點P到定點的距離的平方,且在內(nèi)切圓內(nèi),所以,所以,,即的最小值為18,故選:B.11、D【解析】求出函數(shù)的導數(shù),將x=1代入即可求得答案.【詳解】,故,故選:D.12、D【解析】由題意,即在區(qū)間上有兩個異號零點,令,利用函數(shù)的單調(diào)性與導數(shù)的關系判斷單調(diào)性,數(shù)形結(jié)合即可求解【詳解】解:由題意,即在區(qū)間上有兩個異號零點,構造函數(shù),則,令,得,令,得,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,又時,,時,,且,所以,即,所以的范圍故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】直接利用等差數(shù)列前項和公式和等差數(shù)列的性質(zhì)求解即可.【詳解】由已知條件得,故答案為:.14、08##【解析】根據(jù)表格中的數(shù)據(jù)求出,將點代入回歸直線求出即可.【詳解】由表格可得,,由于回歸直線過點,故,解得,故答案為:0.08.15、【解析】根據(jù)球的體積公式計算可得;【詳解】解:因為球的半徑,所以球的體積;故答案為:16、【解析】利用導數(shù)法求解.【詳解】因為函數(shù),所以,當時,,所以的單調(diào)增區(qū)間是,故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)平方米【解析】(1)由題意得矩形場地的另一邊長為80-2x米,通過矩形面積得出關于的函數(shù)表達式;(2)利用二次函數(shù)的性質(zhì)求出的最大值即可【小問1詳解】解:由題意得矩形場地的另一邊長為80-2x米,又,得,所以【小問2詳解】解:由(1)得,當且僅當時,函數(shù)取得最大值平方米18、(1)證明見詳解(2)證明見詳解【解析】利用函數(shù)奇偶性的定義證明即可【小問1詳解】由題意函數(shù)定義域為且故是上的偶函數(shù)【小問2詳解】由題意函數(shù)定義域為且故是上奇函數(shù)19、(1)(2)周長是定值,且定值為4【解析】(1)首先求出直線與軸的交點,即可求出,再根據(jù)離心率求出,最后根據(jù)求出,即可得解;(2):設直線的方程為、、,聯(lián)立直線與橢圓方程,消元列出韋達定理,即可表示出弦的長,再根據(jù)直線與圓相切,則圓心到直線的距離等于半徑,即可得到,再求出、,最后根據(jù)計算即可得解;【小問1詳解】解:因為經(jīng)過橢圓的右焦點,令,則,所以橢圓的右焦點為,可得:,又,可得:,由,所以,∴橢圓的標準方程為;【小問2詳解】解:設直線的方程為,由得:,所以,設,,則:,所以.因為直線與圓相切,所以,即,所以,因為,又,所以,同理.所以,即的周長是定值,且定值為420、(1);(2)證明見解析.【解析】(1)用待定系數(shù)法求出橢圓的方程;(2)設直線MN的方程為x=my+1,設,用“設而不求法”表示出.由直線AM的方程為,直線BN的方程為,聯(lián)立,解得:,即可證明直線AM與BN的交點在直線上.【小問1詳解】由題意可得:,解得:,所以C的方程為.【小問2詳解】由(1)得A(-2,0),B(2,0),F2(1,0),設直線MN的方程為x=my+1.設,由,消去y得:,所以.所以.因為直線AM的方程為,直線BN的方程為,二者聯(lián)立,有,所以,解得:,直線AM與BN的交點在直線上.【點睛】(1)待定系數(shù)法可以求二次曲線的標準方程;(2)"設而不求"是一種在解析幾何中常見的解題方法,可以解決直線與二次曲線相交的問題.21、(1)圓C與圓M相交,理由見解析(2)或【解析】(1)利用圓心距與半徑的關系即可判斷結(jié)果;(2)討論,當直線l的斜率不存在時則方程為,當直線l的斜率存在時,設其方程為,利用圓心到直線的距離等于半徑計算即可得出結(jié)果.【小問1詳解】把圓M的方程化成標準方程,得,圓心為,半徑.圓C的圓心為,半徑,因為,所以圓C與圓M相交,【小問2詳解】①當直線l的斜率不存在時,直線l的方程為到圓心C距離為2,滿足題意;②當直線l的斜率存在時,設其方程為,由題意得,解得,故直線l的方程為.綜上,直線l的方程為或.22、(1);(2)證明見解析.【解析】(1)由離心率、過點和橢圓關系可構造方程求得,由此可得橢圓方程;(2)當直線斜率不存在時,表示出兩點坐標,由兩點連線斜率公式表示出,整理可得直線為;當直線斜率存在時,設,與橢圓方程聯(lián)立可得韋達定理的形式,代入中整理可得,由此可得直線所過定點;綜合兩種情況可得直線過定點.【詳解】(1)橢圓過點,即,;,又,,橢圓的方程為:.(2)當直線斜率不存在時,設直線方程為,則,則,,解得:,直線方程為;當直線斜率存在時,設直線方程為,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年青島房地產(chǎn)交易稅收優(yōu)惠政策合同
- 2024年金融科技產(chǎn)品研發(fā)與測試合同
- 2025年度城市基礎設施建設與運營管理服務合同3篇
- 2024年網(wǎng)絡劇拍攝聯(lián)合協(xié)議:場地、技術與創(chuàng)意共享2篇
- 2024年新能源汽車租賃與充電設施運營維護合同3篇
- 2024年項目部木工班組安全施工及現(xiàn)場安全管理協(xié)議3篇
- 2024年車輛交易綜合服務協(xié)議模板一
- 2024門窗行業(yè)技術升級改造項目合同3篇
- 2025年度文化產(chǎn)業(yè)項目投資合作協(xié)議書6篇
- 2025年度材料回收利用合同修訂版模板3篇
- 技術資料檢查評分表
- 國際森林日森林防火教育宣傳主題班會PPT模板
- 軸聯(lián)軸器離合器解析課件
- 一年級上學期語文期末試卷分析一年級上冊語文試卷
- C4支持學生創(chuàng)造性學習與表達作業(yè)1-設計方案
- 藥廠質(zhì)量管理部QA人員崗位設置表
- Q∕SY 01330-2020 井下作業(yè)現(xiàn)場監(jiān)督規(guī)范
- 醫(yī)院關于不合理醫(yī)療檢查專項治理自查自查自糾總結(jié)
- 全國各地木材平衡含水率年平均值
- 小學二年級100以內(nèi)進退位加減法混合運算
- 市委組織部副部長任職表態(tài)發(fā)言
評論
0/150
提交評論