賀州市重點(diǎn)中學(xué)2023年數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)試題含解析_第1頁
賀州市重點(diǎn)中學(xué)2023年數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)試題含解析_第2頁
賀州市重點(diǎn)中學(xué)2023年數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)試題含解析_第3頁
賀州市重點(diǎn)中學(xué)2023年數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)試題含解析_第4頁
賀州市重點(diǎn)中學(xué)2023年數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

賀州市重點(diǎn)中學(xué)2023年數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.雙曲線的離心率為,焦點(diǎn)到漸近線的距離為,則雙曲線的焦距等于A. B.C. D.2.已知等差數(shù)列的前項(xiàng)和為,若,,則()A. B.C. D.3.變量,之間的一組相關(guān)數(shù)據(jù)如表所示:若,之間的線性回歸方程為,則的值為()45678.27.86.65.4A. B.C. D.4.橢圓與雙曲線有公共的焦點(diǎn)、,與在第一象限內(nèi)交于點(diǎn),是以線段為底邊的等腰三角形,若橢圓的離心率的范圍是,則雙曲線的離心率取值范圍是()A. B.C. D.5.德國數(shù)學(xué)家米勒曾提出最大視角問題,這一問題一般的描述是:已知點(diǎn)A、B是的ON邊上的兩個(gè)定點(diǎn),C是OM邊上的一個(gè)動(dòng)點(diǎn),當(dāng)C在何處時(shí),最大?問題的答案是:當(dāng)且僅當(dāng)?shù)耐饨訄A與邊OM相切于點(diǎn)C時(shí),最大.人們稱這一命題為米勒定理.已知點(diǎn)P、Q的坐標(biāo)分別是(2,0),(4,0),R是y軸正半軸上的一動(dòng)點(diǎn),當(dāng)最大時(shí),點(diǎn)R的縱坐標(biāo)為()A.1 B.C. D.26.雙曲線的兩個(gè)焦點(diǎn)坐標(biāo)是()A.和 B.和C.和 D.和7.設(shè)雙曲線的左、右頂點(diǎn)分別為、,左、右焦點(diǎn)分別為、,以為直徑的圓與雙曲線左支的一個(gè)交點(diǎn)為若以為直徑的圓與直線相切,則的面積為()A. B.C. D.8.直線在y軸上的截距是A. B.C. D.9.1852年英國來華傳教士偉烈亞力將《孫子算經(jīng)》中“物不知數(shù)”問題解法傳至歐洲,西方人稱之為“中國剩余定理”.現(xiàn)有這樣一個(gè)問題:將1到200中被3整除余1且被4整除余2的數(shù)按從小到大的順序排成一列,構(gòu)成數(shù)列,則=()A.130 B.132C.140 D.14410.已知,是圓上的兩點(diǎn),是直線上一點(diǎn),若存在點(diǎn),,,使得,則實(shí)數(shù)的取值范圍是()A. B.C. D.11.已知拋物線的方程為,則此拋物線的準(zhǔn)線方程為()A. B.C. D.12.已知雙曲線:的右焦點(diǎn)為,過的直線(為常數(shù))與雙曲線在第一象限交于點(diǎn).若(為原點(diǎn)),則的離心率為()A. B.C. D.5二、填空題:本題共4小題,每小題5分,共20分。13.已知,若在區(qū)間上有且只有一個(gè)極值點(diǎn),則a的取值范圍是______14.如圖,四邊形為直角梯形,且,為正方形,且平面平面,,,,則______,直線與平面所成角的正弦值為______15.已知雙曲線的左、右焦點(diǎn)分別為,右頂點(diǎn)為,為雙曲線上一點(diǎn),且,線段的垂直平分線恰好經(jīng)過點(diǎn),則雙曲線的離心率為_______16.?dāng)?shù)學(xué)中有許多形狀優(yōu)美、寓意美好的曲線,曲線就是其中之一(如圖).給出下列三個(gè)結(jié)論:其中,所有正確結(jié)論的序號(hào)是____________①曲線C恰好經(jīng)過6個(gè)整點(diǎn)(即橫、縱坐標(biāo)均為整數(shù)的點(diǎn));②曲線C上任意一點(diǎn)到原點(diǎn)的距離都不超過;③曲線C所圍城的“心形”區(qū)域的面積小于3三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù),(1)求的最大值;(2)求證:對(duì)于任意x∈(1,7),e1-x+18.(12分)已知雙曲線C:(,)的一條漸近線的方程為,雙曲線C的右焦點(diǎn)為,雙曲線C的左、右頂點(diǎn)分別為A,B(1)求雙曲線C的方程;(2)過右焦點(diǎn)F的直線l與雙曲線C的右支交于P,Q兩點(diǎn)(點(diǎn)P在x軸的上方),直線AP的斜率為,直線BQ的斜率為,證明:為定值19.(12分)已知命題p:方程的曲線是焦點(diǎn)在y軸上的雙曲線;命題q:方程無實(shí)根.若p或q為真,¬q為真,求實(shí)數(shù)m的取值范圍.20.(12分)如圖,在長(zhǎng)方體中,底面是邊長(zhǎng)為1的正方形,側(cè)棱長(zhǎng)為2,且動(dòng)點(diǎn)P在線段AC上運(yùn)動(dòng)(1)若Q為的中點(diǎn),求點(diǎn)Q到平面的距離;(2)設(shè)直線與平面所成角為,求的取值范圍21.(12分)如圖,在四棱錐中,平面,底面是直角梯形,,,,,為側(cè)棱包含端點(diǎn)上的動(dòng)點(diǎn).(1)當(dāng)時(shí),求證平面;(2)當(dāng)直線與平面所成角的正弦值為時(shí),求二面角的余弦值.22.(10分)如圖,在梯形中,,,平面,四邊形為矩形,點(diǎn)為線段的中點(diǎn),且(1)求證:平面平面;(2)若平面與平面所成銳二面角的余弦值為,則三棱錐F-ABC的體積為多少?

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】不妨設(shè)雙曲線方程為,則,即設(shè)焦點(diǎn)為,漸近線方程為則又解得.則焦距為.選:D2、B【解析】根據(jù)和可求得,結(jié)合等差數(shù)列通項(xiàng)公式可求得.【詳解】設(shè)等差數(shù)列公差為,由得:;又,,.故選:B.3、C【解析】本題先求樣本點(diǎn)中心,再利用線性回歸方程過樣本點(diǎn)中心直接求解即可.【詳解】解:,,所以樣本點(diǎn)中心:,線性回歸方程過樣本點(diǎn)中心,則解得:,故選:C【點(diǎn)睛】本題考查線性回歸方程過樣本點(diǎn)中心,是簡(jiǎn)單題.4、B【解析】求得,可得出,設(shè)橢圓和雙曲線的離心率分別為、,可得,由可求得的取值范圍.【詳解】設(shè),設(shè)雙曲線的實(shí)軸長(zhǎng)為,因?yàn)榕c在第一象限內(nèi)交于點(diǎn),是以線段為底邊的等腰三角形,則,由橢圓的定義可得,由雙曲線的定義可得,所以,,則,設(shè)橢圓和雙曲線的離心率分別為、,則,即,因,則,故.故選:B.5、C【解析】由題意,借助米勒定理,可設(shè)出坐標(biāo),表示出的外接圓方程,然后在求解點(diǎn)R的縱坐標(biāo).【詳解】因?yàn)辄c(diǎn)P、Q的坐標(biāo)分別是(2,0),(4,0)是x軸正半軸上的兩個(gè)定點(diǎn),點(diǎn)R是y軸正半軸上的一動(dòng)點(diǎn),根據(jù)米勒定理,當(dāng)?shù)耐饨訄A與y軸相切時(shí),最大,由垂徑定理可知,弦的垂直平分線必經(jīng)過的外接圓圓心,所以弦的中點(diǎn)為(3,0),故弦中點(diǎn)的橫坐標(biāo)即為的外接圓半徑,即,由垂徑定理可得,圓心坐標(biāo)為,故的外接圓的方程為,所以點(diǎn)R的縱坐標(biāo)為.故選:C.6、C【解析】由雙曲線標(biāo)準(zhǔn)方程可得到焦點(diǎn)所在軸及半焦距的長(zhǎng),進(jìn)而得到兩個(gè)焦點(diǎn)坐標(biāo).【詳解】雙曲線中,,則又雙曲線焦點(diǎn)在y軸,故雙曲線的兩個(gè)焦點(diǎn)坐標(biāo)是和故選:C7、C【解析】據(jù)三角形中位線可得;再由雙曲線的定義求出,進(jìn)而求出的面積【詳解】雙曲線的方程為:,,設(shè)以為直徑的圓與直線相切與點(diǎn),則,且,,∥.又為的中點(diǎn),,又,,的面積為:.故選:C8、D【解析】在y軸上的截距只需令x=0求出y的值即可得出.【詳解】令x=0,則y=-2,即直線在y周上的截距為-2,故選D.9、A【解析】分析數(shù)列的特點(diǎn),可知其是等差數(shù)列,寫出其通項(xiàng)公式,進(jìn)而求得結(jié)果,【詳解】被3整除余1且被4整除余2的數(shù)按從小到大的順序排成一列,這樣的數(shù)構(gòu)成首項(xiàng)為10,公差為12的等差數(shù)列,所以,故,故選:A.10、B【解析】確定在以為直徑的圓上,,根據(jù)均值不等式得到圓上的點(diǎn)到的最大距離為,得到,解得答案.【詳解】,故在以為直徑的圓上,設(shè)中點(diǎn)為,則,圓上的點(diǎn)到的最大距離為,,當(dāng)時(shí)等號(hào)成立.直線到原點(diǎn)的距離為,故.故選:B.11、A【解析】由拋物線的方程直接寫出其準(zhǔn)線方程即可.【詳解】由拋物線的方程為,則其準(zhǔn)線方程為:故選:A12、D【解析】取雙曲線的左焦點(diǎn),連接,計(jì)算可得,即.設(shè),則,,解得:,利用勾股定理計(jì)算可得,即可得出結(jié)果.【詳解】取雙曲線的左焦點(diǎn),連接,,則因?yàn)?,所以,?,.設(shè),則,,解得:.,,..故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求導(dǎo)得,進(jìn)而根據(jù)題意在上有且只有一個(gè)變號(hào)零點(diǎn),再根據(jù)零點(diǎn)的存在性定理求解.【詳解】解:,∵在區(qū)間上有且只有一個(gè)極值點(diǎn),∴在上有且只有一個(gè)變號(hào)零點(diǎn),∴,解得∴a的取值范圍是.故答案為:14、①..②..【解析】以點(diǎn)為坐標(biāo)原點(diǎn),,,所在直線分別為軸,軸,軸建立空間直角坐標(biāo)系,根據(jù)空間向量的線性運(yùn)算求得向量的坐標(biāo),由此求得,由線面角的空間向量求解方法求得答案.【詳解】解:以點(diǎn)為坐標(biāo)原點(diǎn),,,所在直線分別為軸,軸,軸建立空間直角坐標(biāo)系(如下圖所示)由題意可知,,,因?yàn)?,,所以,故設(shè)平面的法向量為,則,令,得因?yàn)?,所以直線與平面所成角的正弦值為故答案為:;.15、【解析】在中求出,再在中求出,即可得到的齊次式,化簡(jiǎn)即可求出離心率【詳解】設(shè)雙曲線:,,不妨設(shè)為雙曲線右支上一點(diǎn)因?yàn)榫€段的垂直平分線恰好經(jīng)過點(diǎn),且,所以,在中,,所以,,在中,,所以,,因此,,化簡(jiǎn)得,,即,而,解得故答案為:16、①②【解析】根據(jù)題意,先判斷曲線關(guān)于軸對(duì)稱,由基本不等式的性質(zhì)對(duì)方程變形,得到,可判定①正確;當(dāng)時(shí),,得到曲線右側(cè)部分的點(diǎn)到原點(diǎn)的距離都不超過,再根據(jù)曲線的對(duì)稱性,可判定②正確;由軸的上方,圖形的面積大于四點(diǎn)圍成的矩形的面積,在軸的下方,圖形的面積大于三點(diǎn)圍成的三角形的面積,可判斷③不正確.【詳解】根據(jù)題意,曲線,用替換曲線方程中的,方程不變,所以曲線關(guān)于軸對(duì)稱,對(duì)于①中,當(dāng)時(shí),,即為,可得,所以曲線經(jīng)過點(diǎn),再根據(jù)對(duì)稱性可知,曲線還經(jīng)過點(diǎn),故曲線恰好經(jīng)過6個(gè)整點(diǎn),所以①正確;對(duì)于②中,由①可知,當(dāng)時(shí),,即曲線右側(cè)部分的點(diǎn)到原點(diǎn)的距離都不超過,再根據(jù)曲線的對(duì)稱性可知,曲線上任意一點(diǎn)到原點(diǎn)的距離都不超過,所以②正確;對(duì)于③中,因?yàn)樵谳S的上方,圖形的面積大于四點(diǎn)圍成的矩形的面積,在軸的下方,圖形的面積大于三點(diǎn)圍成的三角形的面積,所以曲線所圍城的“心形”區(qū)域的面積大于3,所以③不正確.故選:①②三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】(1)求出,討論其導(dǎo)數(shù)后可得原函數(shù)的單調(diào)性,從而可得函數(shù)的最大值.(2)先證明任意的,總有,再利用放縮法和換元法將不等式成立問題轉(zhuǎn)化為任意恒成立,后者可利用導(dǎo)數(shù)證明.【小問1詳解】,當(dāng)時(shí),;當(dāng)時(shí),,故在上為增函數(shù),在上為減函數(shù),故.【小問2詳解】因?yàn)椋十?dāng)時(shí),,即,而在為減函數(shù),故在上有,故任意的,總有.要證任意恒成立,即證:任意恒成立,即證:任意恒成立,由(1)可得,任意,有即,故即證:任意恒成立,設(shè),即證:任意恒成立,即證:任意恒成立,即證:任意恒成立,即證:任意恒成立,設(shè),則,而在為增函數(shù),,故存在,使得,且時(shí),,時(shí),,故在為減函數(shù),在為增函數(shù),故任意,總有,故任意恒成立,所以任意恒成立.【點(diǎn)睛】思路點(diǎn)睛:不等式的恒成立,可結(jié)合不等式的形式將其轉(zhuǎn)化為若干段上的不等式的恒成立,在每段上可采用不同的方式(導(dǎo)數(shù)、放縮法等)進(jìn)行處理.18、(1);(2)證明見解析.【解析】(1)由題可得,,即求;(2)由題可設(shè)直線方程與雙曲線方程聯(lián)立,利用韋達(dá)定理法即證【小問1詳解】由題意可知在雙曲線C中,,,,解得所以雙曲線C的方程為;【小問2詳解】證法一:由題可知,設(shè)直線,,,由,得,則,,∴,,;當(dāng)直線的斜率不存在時(shí),,此時(shí).綜上,為定值證法二:設(shè)直線PQ方程為,,,聯(lián)立得整理得,由過右焦點(diǎn)F的直線l與雙曲線C的右支交于P,Q兩點(diǎn),則解得,,,,由雙曲線方程可得,,,,∵,∴,,證法三:設(shè)直線PQ方程為,,,聯(lián)立得整理得,由過右焦點(diǎn)F的直線l與雙曲線C的右支交于P,Q兩點(diǎn),則解得,∴,,由雙曲線方程可得,,則,所以,,,∴為定值19、.【解析】計(jì)算命題p:;命題;根據(jù)p或q為真,¬q為真得到真假,計(jì)算得到答案.【詳解】若方程的曲線是焦點(diǎn)在軸上的雙曲線,則滿足,即,即,即若方程無實(shí)根,則判別式,即,得,即,即若為真,則為假,同時(shí)若或?yàn)檎?,則為真命題,即,得,即實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題考查了命題的真假計(jì)算參數(shù)范圍,根據(jù)條件判斷出真假是解題的關(guān)鍵.20、(1)1(2)【解析】(1)以AB,AD,為x,y,z軸正向建立直角坐標(biāo)系,利用空間向量法求出平面的法向量,結(jié)合點(diǎn)到平面的距離的向量求法計(jì)算即可;(2)設(shè)點(diǎn),,進(jìn)而得出的坐標(biāo),利用向量的數(shù)量積即可列出線面角正弦值的表達(dá)式,結(jié)合二次函數(shù)的性質(zhì)即可得出結(jié)果.【小問1詳解】由題意,分別以AB,AD,為x,y,z軸正向建立直角坐標(biāo)系,于是,,,,,設(shè)平面法向量所以,解得,,令得,,設(shè)點(diǎn)Q到平面的距離為d,【小問2詳解】由(1)可知,平面的法向量,由P點(diǎn)在線段AC上運(yùn)動(dòng)可設(shè)點(diǎn),于是,,所以,的取值范圍是21、(1)證明見解析;(2).【解析】(1)連接交于,連接,證得,從而證得平面;(2)過作于,以為原點(diǎn),建立空間直角坐標(biāo)系,設(shè),求面的法向量,由直線與平面所成角的正弦值為,求得的值,再用向量法求出二面角的余弦值.【詳解】解:(1)連接交于,連接,由題意,∵,∴,∴,又面,面,∴面.(2)過作于,則在中,,,,以為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系.設(shè),則,,,,,,,,設(shè)向量為平面的一個(gè)法向量,則由,有,令,得;記直線與平面所成的角為,則,解得,此時(shí);設(shè)向量為平面的一個(gè)法向量則由,有,令,得;∴二面角的余弦值為.【點(diǎn)睛】本題考查了線面平行的判定與證明,用向量法求線面角,二面角,還考查了學(xué)生的分析能力,空間想象能力,運(yùn)算能力,屬于中檔題.2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論