河北省xx中學(xué)2022-2023學(xué)年高一上學(xué)期期中數(shù)學(xué)試題(含解析)_第1頁
河北省xx中學(xué)2022-2023學(xué)年高一上學(xué)期期中數(shù)學(xué)試題(含解析)_第2頁
河北省xx中學(xué)2022-2023學(xué)年高一上學(xué)期期中數(shù)學(xué)試題(含解析)_第3頁
河北省xx中學(xué)2022-2023學(xué)年高一上學(xué)期期中數(shù)學(xué)試題(含解析)_第4頁
河北省xx中學(xué)2022-2023學(xué)年高一上學(xué)期期中數(shù)學(xué)試題(含解析)_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

高一上學(xué)期期中數(shù)學(xué)試題第Ⅰ卷(選擇題共60分)一、單項選擇題(本題共8小題,每小題5分,共40分,在每小題給出的四個選項中,只有一項是符合題目要求的)1.已知集合SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】【分析】由題意求出集合的交集即可.【詳解】由題意SKIPIF1<0,所以SKIPIF1<0,故選:A.【點(diǎn)睛】本題主要考查集合的交并補(bǔ)運(yùn)算,屬于簡單題.2.下列函數(shù)中,與SKIPIF1<0是同一個函數(shù)的是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】【分析】根據(jù)函數(shù)的概念,結(jié)合函數(shù)的定義域與對應(yīng)法則,逐項分析即得.【詳解】對于A,函數(shù)SKIPIF1<0,與函數(shù)SKIPIF1<0的定義域不同,不是同一個函數(shù);對于B,函數(shù)SKIPIF1<0,與函數(shù)SKIPIF1<0的定義域相同,對應(yīng)關(guān)系也相同,是同一個函數(shù);對于C,函數(shù)SKIPIF1<0,與函數(shù)SKIPIF1<0的對應(yīng)關(guān)系不同,不是同一個函數(shù);對于D,函數(shù)SKIPIF1<0,與函數(shù)SKIPIF1<0的定義域不同,不是同一個函數(shù).故選:B.3.命題“SKIPIF1<0有實數(shù)解”的否定是()A.SKIPIF1<0無實數(shù)解 B.SKIPIF1<0有實數(shù)解C.SKIPIF1<0有實數(shù)解 D.SKIPIF1<0無實數(shù)解【答案】D【解析】【分析】根據(jù)全稱量詞命題的否定是存在量詞命題即可求解.【詳解】因為全稱量詞命題的否定是存在量詞命題,所以“SKIPIF1<0有實數(shù)解”的否定是“SKIPIF1<0無實數(shù)解”.故選:D.4.已知函數(shù)SKIPIF1<0的對應(yīng)關(guān)系如下表所示,函數(shù)SKIPIF1<0的圖像是如圖所示的曲線SKIPIF1<0,則SKIPIF1<0的值為()x123SKIPIF1<0230A.3 B.0 C.1 D.2【答案】A【解析】【分析】根據(jù)題意,由SKIPIF1<0的圖像求出SKIPIF1<0,再由SKIPIF1<0求解即可.【詳解】根據(jù)題意,由函數(shù)SKIPIF1<0的圖像,可得SKIPIF1<0,則SKIPIF1<0故選:A.5.已知SKIPIF1<0定義域為SKIPIF1<0,則SKIPIF1<0的定義域為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】【分析】根據(jù)復(fù)合函數(shù)的定義域求解規(guī)則求解即可.【詳解】解:因為SKIPIF1<0定義域為SKIPIF1<0,所以函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,所以,SKIPIF1<0的定義域為需滿足SKIPIF1<0,解得SKIPIF1<0.所以,SKIPIF1<0的定義域為SKIPIF1<0.故選:A6.下列說法正確的是()A.不等式SKIPIF1<0的解集為SKIPIF1<0B.若SKIPIF1<0,則函數(shù)SKIPIF1<0的最小值為2C.若實數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0D.當(dāng)SKIPIF1<0時,不等式SKIPIF1<0恒成立,則SKIPIF1<0的取值范圍是SKIPIF1<0【答案】C【解析】【分析】求出不等式的解集判斷A;由基本不等式等號成立的條件以及函數(shù)的單調(diào)性可判斷B;利用不等式的性質(zhì)可判斷C;舉反例判斷D.【詳解】對于A,不等式SKIPIF1<0的解集為SKIPIF1<0或SKIPIF1<0,故A不正確;對于B,令SKIPIF1<0,則函數(shù)SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時取等號,此時SKIPIF1<0無解,故SKIPIF1<0取不到最小值2,所以函數(shù)SKIPIF1<0的最小值不可能是2,故B錯誤,對于C,若SKIPIF1<0,則SKIPIF1<0,故C正確;對于D,當(dāng)SKIPIF1<0時,SKIPIF1<0時,不等式SKIPIF1<0恒成立,故D不正確.故選:C7.因為疫情原因,某校實行憑證入校,凡是不帶出入證者一律不準(zhǔn)進(jìn)校園,某學(xué)生早上上學(xué),早上他騎自行車從家里出發(fā)離開家不久,發(fā)現(xiàn)出入證忘在家里了,于是回到家取上出入證,然后改為乘坐出租車以更快的速度趕往學(xué)校,令x(單位:分鐘)表示離開家的時間,y(單位:千米)表示離開家的距離,其中等待紅綠燈及在家取出入證的時間忽略不計,下列圖象中與上述事件吻合最好的是()A. B.C. D.【答案】C【解析】【分析】根據(jù)它離家的距離與離開的速度判斷.【詳解】中途回家取證件,因此中間有零點(diǎn),排除AB,第二次離開家速度更大,直線的斜率更大,只有C滿足.故選:C.8.已知函數(shù)SKIPIF1<0,若對任意SKIPIF1<0,不等式SKIPIF1<0恒成立,則實數(shù)SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】【分析】先由解析式得到SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,由于SKIPIF1<0,結(jié)合SKIPIF1<0可得到SKIPIF1<0在SKIPIF1<0,SKIPIF1<0恒成立,即可得到答案.【詳解】SKIPIF1<0,因為SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,因為SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0,SKIPIF1<0恒成立,所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0故選:B二、多項選擇題(本題共4小題,每小題5分,共20分,在每小題給出的選項中,有多項是符合題目要求,全部選對的得5分,部分選對的得2分,有選錯的得0分)9.設(shè)函數(shù)SKIPIF1<0,當(dāng)SKIPIF1<0為增函數(shù)時,實數(shù)SKIPIF1<0的值可能是()A.2 B.SKIPIF1<0 C.SKIPIF1<0 D.1【答案】CD【解析】【分析】由題知SKIPIF1<0,且SKIPIF1<0,進(jìn)而解不等式即可得SKIPIF1<0,再結(jié)合選項即可得答案.【詳解】解:當(dāng)SKIPIF1<0時,SKIPIF1<0為增函數(shù),則SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0為增函數(shù),故SKIPIF1<0為增函數(shù),則SKIPIF1<0,且SKIPIF1<0,解得SKIPIF1<0,所以,實數(shù)SKIPIF1<0的值可能是SKIPIF1<0內(nèi)的任意實數(shù).故選:CD.10.某校學(xué)習(xí)興趣小組通過研究發(fā)現(xiàn):形如SKIPIF1<0(SKIPIF1<0,SKIPIF1<0不同時為0)的函數(shù)圖象可以由反比例函數(shù)的圖象經(jīng)過平移變換而得到,則對函數(shù)SKIPIF1<0的圖象及性質(zhì),下列表述正確的是()A.圖象上點(diǎn)的縱坐標(biāo)不可能為1B.圖象關(guān)于點(diǎn)SKIPIF1<0成中心對稱C.圖象與x軸無交點(diǎn)D.函數(shù)在區(qū)間SKIPIF1<0上單調(diào)遞減【答案】ABD【解析】【分析】化簡SKIPIF1<0得到SKIPIF1<0,結(jié)合反比例函數(shù)SKIPIF1<0的性質(zhì)可得到結(jié)果.【詳解】SKIPIF1<0,則函數(shù)SKIPIF1<0的圖象可由的SKIPIF1<0圖象先向右平移一個單位長度,再向上平移一個單位長度得到,∴SKIPIF1<0圖象上點(diǎn)的縱坐標(biāo)不可能為1,A正確;圖象關(guān)于點(diǎn)SKIPIF1<0成中心對稱,B正確;圖象與SKIPIF1<0軸的交點(diǎn)為SKIPIF1<0,C不正確;函數(shù)在區(qū)間SKIPIF1<0上單調(diào)遞減,D正確..故選:ABD.11.已知SKIPIF1<0,SKIPIF1<0是正數(shù),且SKIPIF1<0,下列敘述正確的是()A.SKIPIF1<0的最大值為SKIPIF1<0B.SKIPIF1<0的最小值為SKIPIF1<0C.SKIPIF1<0的最大值為SKIPIF1<0D.SKIPIF1<0的最小值為SKIPIF1<0【答案】ABD【解析】【詳解】因為SKIPIF1<0是正數(shù),且SKIPIF1<0,所以不等式可知SKIPIF1<0,即SKIPIF1<0,得SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0取得等號,所以SKIPIF1<0的最大值為SKIPIF1<0,所以A正確;因為SKIPIF1<0是正數(shù),且SKIPIF1<0,所以SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0時SKIPIF1<0有最小值為SKIPIF1<0,所以B正確;由以上知SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,因為SKIPIF1<0,即SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0即SKIPIF1<0時取等號,因為SKIPIF1<0所以等號不成立,即SKIPIF1<0,所以C錯誤;因為SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0時等號成立,即SKIPIF1<0,所以SKIPIF1<0的最小值為SKIPIF1<0,所以D正確.故選:ABD.12.德國著名數(shù)學(xué)家狄利克雷(Dirichlet,1805~1859)在數(shù)學(xué)領(lǐng)域成就顯著.19世紀(jì),狄利克雷定義了一個“奇怪的函數(shù)”SKIPIF1<0其中SKIPIF1<0為實數(shù)集,SKIPIF1<0為有理數(shù)集.則關(guān)于函數(shù)SKIPIF1<0有如下四個命題,正確的為()A.對任意SKIPIF1<0,都有SKIPIF1<0B.對任意SKIPIF1<0,都存在SKIPIF1<0,SKIPIF1<0C.若SKIPIF1<0,SKIPIF1<0,則有SKIPIF1<0D.存在三個點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,使SKIPIF1<0為等腰直角三角形【答案】BC【解析】【分析】根據(jù)函數(shù)的定義以及解析式,逐項判斷即可.【詳解】解:對于A選項,當(dāng)SKIPIF1<0,則SKIPIF1<0,此時SKIPIF1<0,故A選項錯誤;對于B選項,當(dāng)任意SKIPIF1<0時,存SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0;當(dāng)任意SKIPIF1<0時,存在SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,故對任意SKIPIF1<0,都存在SKIPIF1<0,SKIPIF1<0成立,故B選項正確;對于C選項,根據(jù)題意得函數(shù)SKIPIF1<0的值域為SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,故C選項正確;對于D選項,要為等腰直角三角形,只可能為如下四種情況:①直角頂點(diǎn)SKIPIF1<0在SKIPIF1<0上,斜邊在SKIPIF1<0軸上,此時點(diǎn)SKIPIF1<0,點(diǎn)SKIPIF1<0的橫坐標(biāo)為無理數(shù),則SKIPIF1<0中點(diǎn)的橫坐標(biāo)仍然為無理數(shù),那么點(diǎn)SKIPIF1<0的橫坐標(biāo)也為無理數(shù),這與點(diǎn)SKIPIF1<0的縱坐標(biāo)為1矛盾,故不成立;②直角頂點(diǎn)SKIPIF1<0在SKIPIF1<0上,斜邊不在SKIPIF1<0軸上,此時點(diǎn)SKIPIF1<0的橫坐標(biāo)為無理數(shù),則點(diǎn)SKIPIF1<0的橫坐標(biāo)也應(yīng)為無理數(shù),這與點(diǎn)SKIPIF1<0的縱坐標(biāo)為1矛盾,故不成立;③直角頂點(diǎn)SKIPIF1<0在SKIPIF1<0軸上,斜邊在SKIPIF1<0上,此時點(diǎn)SKIPIF1<0,點(diǎn)SKIPIF1<0的橫坐標(biāo)為有理數(shù),則SKIPIF1<0中點(diǎn)的橫坐標(biāo)仍然為有理數(shù),那么點(diǎn)SKIPIF1<0的橫坐標(biāo)也應(yīng)為有理數(shù),這與點(diǎn)SKIPIF1<0的縱坐標(biāo)為0矛盾,故不成立;④直角頂點(diǎn)SKIPIF1<0在SKIPIF1<0軸上,斜邊不在SKIPIF1<0上,此時點(diǎn)SKIPIF1<0的橫坐標(biāo)為無理數(shù),則點(diǎn)SKIPIF1<0的橫坐標(biāo)也應(yīng)為無理數(shù),這與點(diǎn)SKIPIF1<0的縱坐標(biāo)為1矛盾,故不成立.綜上,不存在三個點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0為等腰直角三角形,故選項D錯誤.故選:BC.【點(diǎn)睛】本題考查函數(shù)的新定義問題,考查數(shù)學(xué)推理與運(yùn)算等核心素養(yǎng),是難題.本題D選項解題的關(guān)鍵是根據(jù)題意分直角頂點(diǎn)SKIPIF1<0在SKIPIF1<0上,斜邊在SKIPIF1<0軸上;直角頂點(diǎn)SKIPIF1<0在SKIPIF1<0上,斜邊不在SKIPIF1<0軸上;直角頂點(diǎn)SKIPIF1<0在SKIPIF1<0軸上,斜邊在SKIPIF1<0上;直角頂點(diǎn)SKIPIF1<0在SKIPIF1<0軸上,斜邊不在SKIPIF1<0上四種情況討論求解.第Ⅱ卷(共90分)三、填空題(本題共4小題,每小題5分,共20分)13.“SKIPIF1<0”是“SKIPIF1<0”的__________條件(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)【答案】充分不必要【解析】【分析】首先解一元二次不等式,再根據(jù)充分條件、必要條件的定義判斷即可;詳解】解:由SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,因為SKIPIF1<0SKIPIF1<0,所以由SKIPIF1<0推得出SKIPIF1<0,即充分性成立;由SKIPIF1<0推不出SKIPIF1<0,即必要性不成立;所以“SKIPIF1<0”是“SKIPIF1<0”充分不必要條件;故答案為:充分不必要14.已知SKIPIF1<0,若函數(shù)SKIPIF1<0在SKIPIF1<0上SKIPIF1<0隨SKIPIF1<0增大而減小,且圖像關(guān)于SKIPIF1<0軸對稱,則SKIPIF1<0_______【答案】SKIPIF1<0【解析】【分析】利用冪函數(shù)的單調(diào)性、奇偶性與參數(shù)之間的關(guān)系可得出SKIPIF1<0的值.【詳解】若函數(shù)SKIPIF1<0在SKIPIF1<0上遞減,則SKIPIF1<0.當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0為偶函數(shù),合乎題意;當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0為奇函數(shù),不合乎題意.綜上所述,SKIPIF1<0.故答案為:SKIPIF1<0.15.函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上有SKIPIF1<0,則SKIPIF1<0___________.【答案】SKIPIF1<0【解析】【分析】令SKIPIF1<0,由奇偶性定義可知SKIPIF1<0為奇函數(shù),由SKIPIF1<0可構(gòu)造方程求得結(jié)果.【詳解】令SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為定義在SKIPIF1<0上的奇函數(shù),又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故答案為:SKIPIF1<0.16.已知函數(shù)SKIPIF1<0為定義在SKIPIF1<0上的奇函數(shù),滿足對SKIPIF1<0,SKIPIF1<0,其中SKIPIF1<0,都有SKIPIF1<0,且SKIPIF1<0,則不等式SKIPIF1<0的解集為________(寫成集合或區(qū)間的形式)【答案】SKIPIF1<0【解析】【分析】根據(jù)題意構(gòu)造SKIPIF1<0,判定函數(shù)SKIPIF1<0的單調(diào)性和奇偶性,利用賦值法得到SKIPIF1<0,再通過單調(diào)性和奇偶性求得不等式的解集.【詳解】解:因為SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又因為SKIPIF1<0為定義在R上的奇函數(shù),所以SKIPIF1<0,所以SKIPIF1<0是偶函數(shù),且在SKIPIF1<0上單調(diào)遞減,因為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0等價于SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0,即不等式SKIPIF1<0的解集為SKIPIF1<0.故答案:SKIPIF1<0.四、解答題:(本題共6小題,共70分,解答應(yīng)寫出文字說明、證明過程或演算步驟)17.已知函數(shù)SKIPIF1<0的定義域為A,集合SKIPIF1<0.(1)當(dāng)SKIPIF1<0時,求SKIPIF1<0;(2)若SKIPIF1<0,求a的取值范圍.【答案】(1)SKIPIF1<0或SKIPIF1<0(2)SKIPIF1<0【解析】【分析】(1)求出定義域,得到SKIPIF1<0,進(jìn)而計算出SKIPIF1<0及SKIPIF1<0;(2)分SKIPIF1<0與SKIPIF1<0,列出不等式,求出a的取值范圍.【小問1詳解】要使函數(shù)SKIPIF1<0有意義,則SKIPIF1<0,解得:SKIPIF1<0,所以集合SKIPIF1<0.SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0或SKIPIF1<0,∴SKIPIF1<0或SKIPIF1<0;【小問2詳解】SKIPIF1<0,①當(dāng)SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0,滿足題意;②當(dāng)SKIPIF1<0時,由SKIPIF1<0,得SKIPIF1<0,解得:SKIPIF1<0,綜上所述:a的取值范圍為SKIPIF1<0.18.已知冪函數(shù)SKIPIF1<0(實數(shù)SKIPIF1<0)的圖像關(guān)于SKIPIF1<0軸對稱,且SKIPIF1<0.(1)求SKIPIF1<0的值及函數(shù)SKIPIF1<0的解析式;(2)若SKIPIF1<0,求實數(shù)SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0,SKIPIF1<0;(2)SKIPIF1<0.【解析】【分析】(1)由SKIPIF1<0,得到SKIPIF1<0,從而得到SKIPIF1<0,又由SKIPIF1<0,得出SKIPIF1<0的值和冪函數(shù)的解析式;(2)由已知得到SKIPIF1<0且SKIPIF1<0,由此即可求解實數(shù)SKIPIF1<0的取值范圍.【詳解】(1)由題意,函數(shù)SKIPIF1<0(實數(shù)SKIPIF1<0)的圖像關(guān)于SKIPIF1<0軸對稱,且SKIPIF1<0,所以在區(qū)間SKIPIF1<0為單調(diào)遞減函數(shù),所以SKIPIF1<0,解得SKIPIF1<0,又由SKIPIF1<0,且函數(shù)SKIPIF1<0(實數(shù)SKIPIF1<0)的圖像關(guān)于SKIPIF1<0軸對稱,所以SKIPIF1<0為偶數(shù),所以SKIPIF1<0,所以SKIPIF1<0.(2)因為函數(shù)SKIPIF1<0圖象關(guān)于SKIPIF1<0軸對稱,且在區(qū)間SKIPIF1<0為單調(diào)遞減函數(shù),所以不等式SKIPIF1<0,等價于SKIPIF1<0且SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,所以實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.【點(diǎn)睛】本題主要考查了冪函數(shù)的解析式的求解,以及冪函數(shù)的圖象與性質(zhì)的應(yīng)用,其中解答中認(rèn)真審題,熟練應(yīng)用冪函數(shù)的圖象與性質(zhì)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.19.已知函數(shù)SKIPIF1<0.(1)若函數(shù)SKIPIF1<0定義域為R,求a的取值范圍;(2)若函數(shù)SKIPIF1<0值域為SKIPIF1<0,求a的取值范圍.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【解析】【分析】(1)根據(jù)二次根式的性質(zhì)進(jìn)行求解即可;(2)根據(jù)函數(shù)值域的性質(zhì)進(jìn)行求解即可.【小問1詳解】因為函數(shù)SKIPIF1<0定義域為R,所以SKIPIF1<0在R上恒成立,當(dāng)SKIPIF1<0時,SKIPIF1<0,不符合題意;當(dāng)SKIPIF1<0時,要想SKIPIF1<0在R上恒成立,即SKIPIF1<0在R上恒成立,只需SKIPIF1<0,所以a的取值范圍為SKIPIF1<0;【小問2詳解】當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0符合題意;當(dāng)SKIPIF1<0時,要想函數(shù)SKIPIF1<0值域為SKIPIF1<0,只需SKIPIF1<0,綜上所述:a的取值范圍為SKIPIF1<0.20.已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),當(dāng)SKIPIF1<0時,SKIPIF1<0是一個二次函數(shù)的一部分,其圖象如圖所示.(1)求SKIPIF1<0在SKIPIF1<0上的解析式;(2)若函數(shù)SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的最大值.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【解析】【分析】(1)采用待定系數(shù)法,結(jié)合圖象可求得SKIPIF1<0在SKIPIF1<0時的解析式;由SKIPIF1<0時,SKIPIF1<0可求得SKIPIF1<0;由此可得分段函數(shù)解析式;(2)首先確定SKIPIF1<0解析式,分別在SKIPIF1<0、SKIPIF1<0和SKIPIF1<0的情況下,根據(jù)SKIPIF1<0單調(diào)性得到最大值.【小問1詳解】當(dāng)SKIPIF1<0時,結(jié)合圖象可設(shè):SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0為偶函數(shù),SKIPIF1<0;綜上所述:SKIPIF1<0.【小問2詳解】當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0開口方向向下,對稱軸為SKIPIF1<0;①當(dāng)SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0;②當(dāng)SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0;③當(dāng)SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0;綜上所述:SKIPIF1<0.21.某群體的人均通勤時間,是指單日內(nèi)該群體中成員從居住地到工作地的平均用時,某地上班族SKIPIF1<0中的成員僅以自駕或公交方式通勤,分析顯示:當(dāng)SKIPIF1<0中SKIPIF1<0(SKIPIF1<0)的成員自駕時,自駕群體的人均通勤時間為SKIPIF1<0(單位:分鐘),而公交群體的人均通勤時間不受SKIPIF1<0影響,恒為50分鐘,試根據(jù)上述分析結(jié)果回答下列問題:(1)當(dāng)SKIPIF1<0在什么范圍內(nèi)時,公交群體的人均通勤時間少于自駕群體的人均通勤時間?(2)求該地上班族SKIPIF1<0的人均通勤時間SKIPIF1<0的表達(dá)式;并求出SKIPIF1<0的最小值.【答案】(1)SKIPIF1<0(2)SKIPIF1<0,44【解析】【分析】(1)根據(jù)題意分SKIPIF1<0、SKIPIF1<0討論,運(yùn)算求解;(2)根據(jù)題意整理求解SKIPIF1<0,結(jié)合單調(diào)性求最值.【小問1詳解】當(dāng)SKIPIF1<0時,SKIPIF1<0恒成立,公交群體的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論