廣西壯族自治區(qū)百色市廣西田陽高中2024屆數(shù)學(xué)高二上期末達標(biāo)檢測模擬試題含解析_第1頁
廣西壯族自治區(qū)百色市廣西田陽高中2024屆數(shù)學(xué)高二上期末達標(biāo)檢測模擬試題含解析_第2頁
廣西壯族自治區(qū)百色市廣西田陽高中2024屆數(shù)學(xué)高二上期末達標(biāo)檢測模擬試題含解析_第3頁
廣西壯族自治區(qū)百色市廣西田陽高中2024屆數(shù)學(xué)高二上期末達標(biāo)檢測模擬試題含解析_第4頁
廣西壯族自治區(qū)百色市廣西田陽高中2024屆數(shù)學(xué)高二上期末達標(biāo)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

廣西壯族自治區(qū)百色市廣西田陽高中2024屆數(shù)學(xué)高二上期末達標(biāo)檢測模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知一個圓錐的體積為,任取該圓錐的兩條母線a,b,若a,b所成角的最大值為,則該圓錐的側(cè)面積為()A. B.C. D.2.古希臘數(shù)學(xué)家歐幾里得在《幾何原本》中描述了圓錐曲線共性,并給出了圓錐曲線的統(tǒng)一定義,只可惜對這一定義歐幾里得沒有給出證明.經(jīng)過了500年,到了3世紀(jì),希臘數(shù)學(xué)家帕普斯在他的著作《數(shù)學(xué)匯篇》中,完善了歐幾里得關(guān)于圓錐曲線的統(tǒng)一定義,并對這一定義進行了證明.他指出,到定點的距離與到定直線的距離的比是常數(shù)的點的軌跡叫做圓錐曲線;當(dāng)時,軌跡為橢圓;當(dāng)時,軌跡為拋物線;當(dāng)時,軌跡為雙曲線.現(xiàn)有方程表示的曲線是雙曲線,則的取值范圍為()A. B.C. D.3.若不等式組表示的區(qū)域為,不等式表示的區(qū)域為,向區(qū)域均勻隨機撒顆芝麻,則落在區(qū)域中的芝麻數(shù)約為()A. B.C. D.4.若直線與曲線有公共點,則b的取值范圍是()A. B.C. D.5.已知三棱錐O-ABC,點M,N分別為AB,OC的中點,且,用表示,則等于()A. B.C. D.6.?dāng)?shù)列滿足,且,是函數(shù)的極值點,則的值是()A.2 B.3C.4 D.57.若動圓的圓心在拋物線上,且恒過定點,則此動圓與直線()A.相交 B.相切C.相離 D.不確定8.設(shè),則A.2 B.3C.4 D.59.曲線上存在兩點A,B到直線到距離等于到的距離,則()A.12 B.13C.14 D.1510.在三棱錐中,,D為上的點,且,則()A. B.C. D.11.高二某班共有60名學(xué)生,其中女生有20名,“三好學(xué)生”人數(shù)是全班人數(shù)的,且“三好學(xué)生”中女生占一半.現(xiàn)從該班學(xué)生中任選1人參加座談會,則在已知沒有選上女生的條件下,選上的學(xué)生是“三好學(xué)生”的概率為()A. B.C. D.12.已知數(shù)列為等差數(shù)列,且成等比數(shù)列,則的前6項的和為A.15 B.C.6 D.3二、填空題:本題共4小題,每小題5分,共20分。13.雙曲線的右頂點為A,右焦點為F,過點F平行于雙曲線的一條漸近線的直線與雙曲線交于點B,則的面積為__________14.已知拋物線的焦點為F,若拋物線上一點P到x軸的距離為2,則|PF|的值為___________.15.已知集合,集合,則__________.16.已知單位空間向量,,滿足,.若空間向量滿足,且對于任意實數(shù),的最小值是2,則的最小值是___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,正方體的棱長為4,E,F(xiàn)分別是上的點,且.(1)求與平面所成角的正切值;(2)求證:.18.(12分)如圖,在多面體ABCEF中,和均為等邊三角形,D是AC的中點,(1)證明:(2)若平面平面ACE,求二面角余弦值.19.(12分)已知直線.(1)若,求直線與直線的交點坐標(biāo);(2)若直線與直線垂直,求a的值.20.(12分)某牧場今年初牛的存欄數(shù)為1200,預(yù)計以后每年存欄數(shù)的增長率為8%,且每年年底賣出100頭牛,設(shè)牧場從今年起每年年初的計劃存欄數(shù)依次為,,….(參考數(shù)據(jù):,,.)(1)寫出一個遞推公式,表示與之間的關(guān)系;(2)將(1)中的遞推關(guān)系表示成的形式,其中k,r為常數(shù);(3)求的值(精確到1).21.(12分)某校從參加高二年級期末考試的學(xué)生中抽出60名學(xué)生,并統(tǒng)計了他們的化學(xué)成績(成績均為整數(shù)且滿分為100分),把其中不低于50分的分成五段,,…,后畫出如圖部分頻率分布直方圖.觀察圖形的信息,回答下列問題:(1)求出這60名學(xué)生中化學(xué)成績低于50分的人數(shù);(2)估計高二年級這次考試化學(xué)學(xué)科及格率(60分以上為及格);(3)從化學(xué)成績不及格的學(xué)生中隨機調(diào)查1人,求他的成績低于50分的概率22.(10分)已知等比數(shù)列的公比,且,的等差中項為,.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】設(shè)圓錐的母線長為R,底面半徑長為r,由題可知圓錐的軸截面是等邊三角形,根據(jù)體積公式計算可得,利用扇形的面積公式計算即可求得結(jié)果.【詳解】如圖,設(shè)圓錐的母線長為R,底面半徑長為r,由題可知圓錐的軸截面是等邊三角形,所以,圓錐的體積,解得,所以該圓錐的側(cè)面積為.故選:B2、C【解析】對方程進行化簡可得雙曲線上一點到定點與定直線之比為常數(shù),進而可得結(jié)果.【詳解】已知方程可以變形為,即,∴其表示雙曲線上一點到定點與定直線之比為常數(shù),又由,可得,故選:C.3、A【解析】作出兩平面區(qū)域,計算兩區(qū)域的公共面積,利用幾何概型得出芝麻落在區(qū)域Γ內(nèi)的概率,進而可得答案.【詳解】作出不等式組所表示的平面區(qū)域如下圖中三角形ABC及其內(nèi)部,不等式表示的區(qū)域如下圖中的圓及其內(nèi)部:由圖可得,A點坐標(biāo)為點坐標(biāo)為坐標(biāo)為點坐標(biāo)為.區(qū)域即的面積為,區(qū)域的面積為圓的面積,即,其中區(qū)域和區(qū)域不相交的部分面積即空白面積,所以區(qū)域和區(qū)域相交的部分面積,所以落入?yún)^(qū)域的概率為.所以均勻隨機撒顆芝麻,則落在區(qū)域中芝麻數(shù)約為.故選:A.4、D【解析】將本題轉(zhuǎn)化為直線與半圓的交點問題,數(shù)形結(jié)合,求出的取值范圍【詳解】將曲線的方程化簡為即表示以為圓心,以2為半徑的一個半圓,如圖所示:當(dāng)直線經(jīng)過時最大,即,當(dāng)直線與下半圓相切時最小,由圓心到直線距離等于半徑2,可得:解得(舍去),或結(jié)合圖象可得故選:D.5、D【解析】根據(jù)空間向量的加法、減法和數(shù)乘運算可得結(jié)果.【詳解】.故選:D6、C【解析】利用導(dǎo)數(shù)即可求出函數(shù)的極值點,再利用等差數(shù)列的性質(zhì)及其對數(shù)的運算性質(zhì)求解即可【詳解】由,得,因為,是函數(shù)的極值點,所以,是方程兩個實根,所以,因為數(shù)列滿足,所以,所以數(shù)列為等差數(shù)列,所以,所以,故選:C7、B【解析】根據(jù)題意得定點為拋物線的焦點,為準(zhǔn)線,進而根據(jù)拋物線的定義判斷即可.【詳解】解:由題知,定點為拋物線的焦點,為準(zhǔn)線,因為動圓的圓心在拋物線上,且恒過定點,所以根據(jù)拋物線的定義得動圓的圓心到直線的距離等于圓心到定點,即圓心到直線的距離等于動圓的半徑,所以動圓與直線相切.故選:B8、B【解析】利用復(fù)數(shù)的除法運算求出,進而可得到.【詳解】,則,故,選B.【點睛】本題考查了復(fù)數(shù)的四則運算,考查了復(fù)數(shù)的模,屬于基礎(chǔ)題9、D【解析】由題可知A,B為半圓C與拋物線的交點,利用韋達定理及拋物線的定義即求.【詳解】由曲線,可得,即,為圓心為,半徑為7半圓,又直線為拋物線的準(zhǔn)線,點為拋物線的焦點,依題意可知A,B為半圓C與拋物線的交點,由,得,設(shè),則,,∴.故選:D.10、B【解析】根據(jù)幾何關(guān)系以及空間向量的線性運算即可解出【詳解】因為,所以,即故選:B11、C【解析】設(shè)事件表示“選上的學(xué)生是男生”,事件表示“選上的學(xué)生是三好學(xué)生,求出和,利用條件概率公式計算即可求解.【詳解】設(shè)事件表示“選上的學(xué)生是男生”,事件表示“選上的學(xué)生是‘三好學(xué)生’”,則所求概率為.由題意可得:男生有人,“三好學(xué)生”有人,所以“三好學(xué)生”中男生有人,所以,,故.故選:C.12、C【解析】利用成等比數(shù)列,得到方程2a1+5d=2,將其整體代入{an}前6項的和公式中即可求出結(jié)果【詳解】∵數(shù)列為等差數(shù)列,且成等比數(shù)列,∴,1,成等差數(shù)列,∴2,∴2=a1+a1+5d,解得2a1+5d=2,∴{an}前6項的和為2a1+5d)=故選C【點睛】本題考查等差數(shù)列前n項和求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等差數(shù)列、等比數(shù)列的性質(zhì)的合理運用二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由平行線的性質(zhì)求出斜率,由點斜式求出直線方程,然后求出交點坐標(biāo),由三角形面積公式可得結(jié)果.【詳解】雙曲線的右頂點,右焦點,,所以漸近線方程為,不妨設(shè)直線FB的方程為,將代入雙曲線方程整理,得,解得,,所以,所以故答案為:.14、3【解析】先求出拋物線的焦點坐標(biāo)和準(zhǔn)線方程,再利用拋物線的定義可求得答案【詳解】拋物線的焦點為,準(zhǔn)線為,因為拋物線上一點P到x軸的距離為2,所以由拋物線的定義可得,故答案為:315、##(-1,2]【解析】根據(jù)兩集合的并集的含義,即可得答案.【詳解】因為集合,集合,所以,故答案為:16、【解析】以,方向為軸,垂直于,方向為軸建立空間直角坐標(biāo)系,根據(jù)條件求得坐標(biāo),由二次函數(shù)求最值即可求得最小值.【詳解】以,方向為軸,垂直于,方向為軸建立空間直角坐標(biāo)系,則,由可設(shè),由是單位空間向量可得,由可設(shè),,當(dāng),的最小值是2,所以,取,,,當(dāng)時,最小值為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析.【解析】(1)在正方體中,平面,連接,則為與平面所成的角,在直角三角形,求出即可;(2)∵是正方體,又是空間垂直問題,∴易采用向量法,∴建立如圖所示的空間直角坐標(biāo)系,欲證,只須證,再用向量數(shù)量積公式求解即可.【小問1詳解】在正方體中,平面,連接,則為與平面所成的角,又,,,∴;【小問2詳解】如圖,以為坐標(biāo)原點,直線、、分別軸、軸、軸,建立空間直角坐標(biāo)系.則∴,,∴,∴.18、(1)證明見解析(2)【解析】(1)根據(jù)等腰三角形三線合一的性質(zhì)得到、,即可得到平面,再根據(jù),即可得證;(2)由面面垂直的性質(zhì)得到平面,建立如圖所示空間直角坐標(biāo)系,設(shè),即可得到點,,的坐標(biāo),最后利用空間向量法求出二面角的余弦值;【小問1詳解】證明:連接DE因為,且D為AC的中點,所以因為,且D為AC的中點,所以因為平面BDE,平面BDE,且,所以平面因為,所以平面BDE,所以【小問2詳解】解:由(1)可知因為平面平面,平面平面,平面,所以平面,所以DC,DB,DE兩兩垂直以D為原點,分別以,,的方向為x,y,z軸的正方向,建立如圖所示的空間直角坐標(biāo)系設(shè).則,,.從而,設(shè)平面BCE的法向量為,則令,得平面ABC的一個法向量為設(shè)二面角為,由圖可知為銳角,則19、(1)(2)【解析】(1)聯(lián)立兩直線方程,解方程組即可得解;(2)根據(jù)兩直線垂直列出方程,解之即可得出答案.【小問1詳解】解:當(dāng)時,直線,聯(lián)立,解得,即交點坐標(biāo)為;【小問2詳解】解:直線與直線垂直,則,解得.20、(1)(2)(3)10626【解析】(1)根據(jù)題意,建立遞推關(guān)系即可;(2)利用待定系數(shù)法求解得.(3)利用等比數(shù)列求和公式,結(jié)合已知數(shù)據(jù)求解即可.【小問1詳解】解:因為某牧場今年初牛的存欄數(shù)為1200,預(yù)計以后每年存欄數(shù)的增長率為8%,且每年年底賣出100頭牛,所以,且.【小問2詳解】解:將化成,因為所以比較的系數(shù),可得,解得.所以(1)中的遞推公式可以化為.【小問3詳解】解:由(2)可知,數(shù)列是以為首項,1.08為公比的等比數(shù)列,則.所以.21、(1)6人;(2)75%;(3).【解析】(1)由頻率分布直方圖可得化學(xué)成績低于50分的頻率為0.1,然后可求得人數(shù)為人;(2)根據(jù)頻率分布直方圖求分?jǐn)?shù)在第三、四、五、六組的頻率之和即可;(3)結(jié)合圖形可得“成績低于50分”的人數(shù)是6人,成績在這組的人數(shù)是,由古典概型概率公式可得所求概率為試題解析:(1)因為各組的頻率和等于1,由頻率分布直方圖可得低于50分的頻率為:,所以低于分的人數(shù)為(人)(2)依題意可得成績60及以上的分?jǐn)?shù)所在的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論