版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
河南省鶴壁市第一中學(xué)2024屆高二上數(shù)學(xué)期末綜合測試試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.日常飲用水通常都是經(jīng)過凈化的,隨若水純凈度的提高,所需凈化費用不斷增加.已知水凈化到純凈度為時所需費用單位:元為那么凈化到純凈度為時所需凈化費用的瞬時變化率是()元/t.A. B.C. D.2.若函數(shù)的圖象如圖所示,則函數(shù)的導(dǎo)函數(shù)的圖象可能是()A. B.C D.3.已知雙曲線的左右焦點分別為、,過作的一條漸近線的垂線,垂足為,若的面積為,則的漸近線方程為A. B.C. D.4.過雙曲線的左焦點作x軸的垂線交曲線C于點P,為右焦點,若,則雙曲線的離心率為()A. B.C. D.5.已知等比數(shù)列的前項和為,首項為,公比為,則()A. B.C. D.6.復(fù)數(shù)的共軛復(fù)數(shù)是A. B.C. D.7.過點且平行于直線的直線方程為()A. B.C. D.8.設(shè)分別為圓和橢圓上的點,則兩點間的最大距離是A. B.C. D.9.已知數(shù)列為等差數(shù)列,且成等比數(shù)列,則的前6項的和為A.15 B.C.6 D.310.已知三棱錐O-ABC,點M,N分別為AB,OC的中點,且,用表示,則等于()A. B.C. D.11.已知平面直角坐標(biāo)系內(nèi)一動點P,滿足圓上存在一點Q使得,則所有滿足條件的點P構(gòu)成圖形的面積為()A. B.C. D.12.雙曲線的離心率的取值范圍為,則實數(shù)的取值范圍為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知點和,M是橢圓上一動點,則的最大值為________.14.已知B(,0)是圓A:內(nèi)一點,點C是圓A上任意一點,線段BC的垂直平分線與AC相交于點D.則動點D的軌跡方程為_________________.15.若不同的平面的一個法向量分別為,,則與的位置關(guān)系為___________.16.某人實施一項投資計劃,從2021年起,每年1月1日,把上一年工資的10%投資某個項目.已知2020年他的工資是10萬元,預(yù)計未來十年每年工資都會逐年增加1萬元;若投資年收益是10%,一年結(jié)算一次,當(dāng)年的投資收益自動轉(zhuǎn)入下一年的投資本金,若2031年1月1日結(jié)束投資計劃,則他可以一次性取出的所有投資以及收益應(yīng)有__________萬元.(參考數(shù)據(jù):,,)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線:上的點到其準(zhǔn)線的距離為5.(1)求拋物線的方程;(2)已知為原點,點在拋物線上,若的面積為6,求點的坐標(biāo).18.(12分)為迎接2022年北京冬奧會,推廣滑雪運動,某滑雪場開展滑雪促銷活動.該滑雪場的收費標(biāo)準(zhǔn)是:滑雪時間不超過1小時免費,超過1小時的部分每小時收費標(biāo)準(zhǔn)為40元(不足1小時的部分按1小時計算).有甲、乙兩人相互獨立地來該滑雪場運動,設(shè)甲、乙不超過1小時離開的概率分別為,;1小時以上且不超過2小時離開的概率分別為,;兩人滑雪時間都不會超過3小時.求甲、乙兩人所付滑雪費用相同的概率;19.(12分)如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,AB⊥AD,BC//AD,AD=2BC=2PA=2AB=2,E,F(xiàn),G分別為線段AD,DC,PB的中點.(1)證明:直線PF//平面ACG;(2)求直線PD與平面ACG所成角的正弦值.20.(12分)已知一張紙上畫有半徑為4的圓O,在圓O內(nèi)有一個定點A,且,折疊紙片,使圓上某一點剛好與A點重合,這樣的每一種折法,都留下一條直線折痕,當(dāng)取遍圓上所有點時,所有折痕與的交點形成的曲線記為C.(1)求曲線C的焦點在軸上的標(biāo)準(zhǔn)方程;(2)過曲線C的右焦點(左焦點為)的直線l與曲線C交于不同的兩點M,N,記的面積為S,試求S的取值范圍.21.(12分)兩人下棋,每局均無和棋且獲勝的概率為,某一天這兩個人要進(jìn)行一場五局三勝的比賽,勝者贏得2700元獎金,(1)分別求以獲勝、以獲勝的概率;(2)若前兩局雙方戰(zhàn)成,后因為其他要事而終止比賽,間,怎么分獎金才公平?22.(10分)已知拋物線y2=8x.(1)求出該拋物線的頂點、焦點、準(zhǔn)線、對稱軸、變量x的范圍;(2)以坐標(biāo)原點O為頂點,作拋物線的內(nèi)接等腰三角形OAB,|OA|=|OB|,若焦點F是△OAB的重心,求△OAB的周長
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由題意求出函數(shù)的導(dǎo)函數(shù),然后令即可求解【詳解】因為,所以,則,故選:2、C【解析】由函數(shù)的圖象可知其單調(diào)性情況,再由導(dǎo)函數(shù)與原函數(shù)的關(guān)系即可得解.【詳解】由函數(shù)的圖象可知,當(dāng)時,從左向右函數(shù)先增后減,故時,從左向右導(dǎo)函數(shù)先正后負(fù),故排除AB;當(dāng)時,從左向右函數(shù)先減后增,故時,從左向右導(dǎo)函數(shù)先負(fù)后正,故排除D.故選:C.3、D【解析】求得,根據(jù)的面積列方程,由此求得,進(jìn)而求得雙曲線的漸近線方程.【詳解】依題意,雙曲線的一條漸近線為,則,所以,所以,所以.所以雙曲線漸近線方程為.故選:D【點睛】本小題主要考查雙曲線漸近線的有關(guān)計算,屬于中檔題.4、D【解析】由題知是等腰直角三角形,,又根據(jù)通徑的結(jié)論知,結(jié)合可列出關(guān)于的二次齊次式,即可求解離心率.【詳解】由題知是等腰直角三角形,且,,又,,即,,,即,解得,,.故選:D.5、D【解析】根據(jù)求解即可.【詳解】因為等比數(shù)列,,所以.故選:D6、B【解析】因,故其共軛復(fù)數(shù).應(yīng)選B.考點:復(fù)數(shù)的概念及運算.7、A【解析】設(shè)直線的方程為,代入點的坐標(biāo)即得解.【詳解】解:設(shè)直線的方程為,把點坐標(biāo)代入直線方程得.所以所求的直線方程為.故選:A8、D【解析】轉(zhuǎn)化為圓心到橢圓上點的距離的最大值加(半徑).【詳解】設(shè),圓心為,則,當(dāng)時,取到最大值,∴最大值為故選:D.【點睛】本題考查圓上點與橢圓上點的距離的最值問題,解題關(guān)鍵是圓上的點轉(zhuǎn)化為圓心,利用圓心到動點距離的最值加(或減)半徑得出結(jié)論9、C【解析】利用成等比數(shù)列,得到方程2a1+5d=2,將其整體代入{an}前6項的和公式中即可求出結(jié)果【詳解】∵數(shù)列為等差數(shù)列,且成等比數(shù)列,∴,1,成等差數(shù)列,∴2,∴2=a1+a1+5d,解得2a1+5d=2,∴{an}前6項的和為2a1+5d)=故選C【點睛】本題考查等差數(shù)列前n項和求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等差數(shù)列、等比數(shù)列的性質(zhì)的合理運用10、D【解析】根據(jù)空間向量的加法、減法和數(shù)乘運算可得結(jié)果.【詳解】.故選:D11、D【解析】先找臨界情況當(dāng)PQ與圓C相切時,,進(jìn)而可得滿足條件的點P形成的圖形為大圓(包括內(nèi)部),即求.【詳解】當(dāng)PQ與圓C相切時,,這種情況為臨界情況,當(dāng)P往外時無法找到點Q使,當(dāng)P往里時,可以找到Q使,故滿足條件的點P形成的圖形為大圓(包括內(nèi)部),如圖,由圓,可知圓心,半徑為1,則大圓的半徑為,∴所有滿足條件的點P構(gòu)成圖形的面積為.故選:D.【點睛】關(guān)鍵點點睛:本題的關(guān)鍵是找出臨界情況時點所滿足的條件,進(jìn)而即可得到動點滿足條件的圖形,問題即可解決.12、C【解析】分析可知,利用雙曲線的離心率公式可得出關(guān)于的不等式,即可解得實數(shù)的取值范圍.【詳解】由題意有,,則,解得:故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題設(shè)條件可知,.當(dāng)M在直線與橢圓交點上時,在第一象限交點時有,在第三象限交點時有.顯然當(dāng)M在直線與橢圓第三象限交點時有最大值,其最大值.由此能夠求出的最大值.【詳解】解:A為橢圓右焦點,設(shè)左焦點為,則由橢圓定義,于是.當(dāng)M不在直線與橢圓交點上時,M、F、B三點構(gòu)成三角形,于是,而當(dāng)M在直線與橢圓交點上時,在第一象限交點時,有,在第三象限交點時有.顯然當(dāng)M在直線與橢圓第三象限交點時有最大值,其最大值為.故答案為:.【點睛】本題考查橢圓的基本性質(zhì),解題時要熟練掌握基本公式.14、【解析】利用橢圓的定義可得軌跡方程.【詳解】連接,由題意,,則,由橢圓的定義可得動點D的軌跡為橢圓,其焦點坐標(biāo)為,長半軸長為2,故短半軸長為1,故軌跡方程為:.故答案為:.15、平行【解析】根據(jù)題意得到,得出,即可得到平面與的位置關(guān)系.【詳解】由題意,平面的一個法向量分別為,,可得,所以,所以,即平面與的位置關(guān)系為平行.故答案為:平行16、24【解析】根據(jù)條件求得每一年投入在最終結(jié)算時的總收入,利用錯位相減法求得總收入.【詳解】由題知,2021年的投入在結(jié)算時的收入為,2022年的投入在結(jié)算時的收入為,,2030年的投入在結(jié)算時的收入為,則結(jié)算時的總投資及收益為:①,則②,由①-②得,,則,故答案為:24三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】(1)結(jié)合拋物線的定義求得,由此求得拋物線的方程.(2)設(shè),根據(jù)三角形的面積列方程,求得的值,進(jìn)而求得點的坐標(biāo).【小問1詳解】由拋物線的方程可得其準(zhǔn)線方程,依拋物線的性質(zhì)得,解得.∴拋物線的方程為.【小問2詳解】將代入,得.所以,直線的方程為,即.設(shè),則點到直線的距離,又,由題意得,解得或.∴點的坐標(biāo)是或.18、【解析】甲、乙兩人所付費用相同即為、、,求出相應(yīng)的概率,利用互斥事件的概率公式,可求出甲、乙兩人所付費用相同的概率;【詳解】兩人所付費用相同,相同費用可能為0,40,80元,兩人都付0元的概率為,兩人都付40元的概率為,兩人都付80元的概率為,故兩人所付費用相同的概率為.19、(1)證明見解析(2)【解析】(1)連接EC,設(shè)EB與AC相交于點O,結(jié)合已知條件利用線面平行的判定定理可證得OG//平面PEF,再由三角形中位線定理結(jié)合線面垂直的判定定理可得AC//平面PEF,從而由面面垂直的判定可得平面PEF//平面GAC,進(jìn)而可證得結(jié)論,(2)由已知可證得PA、AB、AD兩兩互相垂直,以A為原點,AB,AD,AP所在的直線為x軸,y軸,z軸,建立空間直角坐標(biāo)系,利用空間向量求解即可【小問1詳解】證明:連接EC,設(shè)EB與AC相交于點O,如圖,因為BC//AD,且,AB⊥AD,所以四邊形ABCE為矩形,所以O(shè)為EB的中點,又因為G為PB的中點,所以O(shè)G為△PBE的中位線,即OG∥PE,因為OG平面PEF,PE?平面PEF,所以O(shè)G//平面PEF,因為E,F(xiàn)分別為線段AD,DC的中點,所以EF//AC,因為AC平面PEF,EF?平面PEF,所以AC//平面PEF,因為OG?平面GAC,AC?平面GAC,AC∩OG=O,所以平面PEF//平面GAC,因為PF?平面PEF,所以PF//平面GAC.【小問2詳解】因為PA⊥底面ABCD,AB?平面ABCD,AD?平面ABCD,所以PA⊥AB,PA⊥AD,因為AB⊥AD,所以PA、AB、AD兩兩互相垂直,以A為原點,AB,AD,AP所在的直線為x軸,y軸,z軸,建立空間直角坐標(biāo)系,如圖所示:則A(0,0,0),,C(1,1,0),D(0,2,0),P(0,0,1),所以,設(shè)平面ACG的法向量為,則,所以,令x=1,可得y=﹣1,z=﹣1,所以,設(shè)直線PD與平面ACG所成角為θ,則,所以直線PD與平面ACG所成角的正弦值為.20、(1);(2)﹒【解析】(1)根據(jù)題意,作出圖像,可得,由此可知M的軌跡C為以O(shè)、A為焦點的橢圓;(2)分為l斜率存在和不存在時討論,斜率存在時,直線方程和橢圓方程聯(lián)立,用韋達(dá)定理表示的面積,根據(jù)變量范圍可求面積的最大值﹒【小問1詳解】以O(shè)A中點G坐標(biāo)原點,OA所在直線為x軸建立平面直角坐標(biāo)系,如圖:∴可知,,設(shè)折痕與和分別交于M,N兩點,則MN垂直平分,∴,又∵,∴,∴M的軌跡是以O(shè),A為焦點,4為長軸的橢圓.∴M的軌跡方程C為;【小問2詳解】設(shè),,則的周長為當(dāng)軸時,l的方程為,,,當(dāng)l與x軸不垂直時,設(shè),由得,∵>0,∴,,,令,則,,∵,∴,∴.綜上可知,S的取值范圍是21、(1)以獲勝、以獲勝的概率分別是;(2)分給分別元,元.【解析】(1)以獲勝、以獲勝,則分別要連勝三局,前三局勝兩局輸一局,第四局勝利;(2)求出若兩局之后正常結(jié)束比賽時,的勝率,按照勝率分獎金.【小問1詳解】設(shè)以獲勝、以獲勝的事件分別為,依題意要想獲勝,必須從第一局開始連勝局,;要想獲勝,則前局只能勝局,且第局勝利,故概率;【小問2詳解】設(shè)前兩局雙方戰(zhàn)成后勝,勝的事件分別為.若勝,則可能連勝局,或者局只勝場,第局勝,故概率;由于兩人比賽沒有和局,獲勝的概率為,則獲勝的概率為,若勝,則可能連勝局,或者局只勝場,第局勝,故概率.故獎金應(yīng)分給元,分給元.22、(1)見解析;(2)2+4.【解析】(1)由拋物線的簡單幾何性質(zhì)易得結(jié)果;(2)由|OA|=|OB|可知AB⊥x軸,又焦點F是△OAB的重心,則|OF|=|OM|=2.設(shè)A(3,m),
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年手機售后服務(wù)協(xié)議模板
- 成品油海上運輸服務(wù)協(xié)議2024年
- 2023-2024學(xué)年之江教育評價高三下階段測試(五)數(shù)學(xué)試題
- 2024年企業(yè)勞務(wù)服務(wù)協(xié)議模板
- 2024辦公電腦集中采購協(xié)議模板
- 2024年反擔(dān)保協(xié)議條款示例
- 2024年家居裝飾協(xié)議格式
- 2024年批量錨具采購商務(wù)協(xié)議條款
- 文書模板-旅游服務(wù)轉(zhuǎn)讓合同
- 2024年電商管理代運營協(xié)議模板
- NB_T 10339-2019《水電工程壩址工程地質(zhì)勘察規(guī)程》_(高清最新)
- 繁體校對《太上老君說常清靜經(jīng)》
- 關(guān)于統(tǒng)一規(guī)范人民防空標(biāo)識使用管理的通知(1)
- 電纜振蕩波局部放電試驗報告
- 西門子RWD68說明書
- 針對建筑工程施工數(shù)字化管理分析
- 多品種共線生產(chǎn)質(zhì)量風(fēng)險評價
- 【MBA教學(xué)案例】從“蝦國”到“國蝦”:國聯(lián)水產(chǎn)的戰(zhàn)略轉(zhuǎn)型
- Unit-1--College-Life
- 醫(yī)院車輛加油卡管理制度
- 平面四桿機構(gòu)急回特性說課課件
評論
0/150
提交評論