版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
廣東省佛山市重點中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線經(jīng)過點,且是的方向向量,則點到的距離為()A. B.C. D.2.在二面角的棱上有兩個點、,線段、分別在這個二面角的兩個面內(nèi),并且都垂直于棱,若,,,,則這個二面角的大小為()A. B.C. D.3.已知函數(shù)為偶函數(shù),且當(dāng)時,,則不等式的解集為()A. B.C. D.4.橢圓上的點P到直線x+2y-9=0的最短距離為()A. B.C. D.5.過點且與直線垂直的直線方程是()A. B.C. D.6.橢圓C:的焦點為,,點P在橢圓上,若,則的面積為()A.48 B.40C.28 D.247.在一個正方體中,為正方形四邊上的動點,為底面正方形的中心,分別為中點,點為平面內(nèi)一點,線段與互相平分,則滿足的實數(shù)的值有A.0個 B.1個C.2個 D.3個8.已知拋物線,則它的焦點坐標(biāo)為()A. B.C. D.9.設(shè),,,則,,大小關(guān)系為A. B.C. D.10.命題“?x∈R,|x|+x2≥0”的否定是()A.?x∈R,|x|+x2<0 B.?x∈R,|x|+x2≤0C.?x0∈R,|x0|+<0 D.?x0∈R,|x0|+≥011.已知函數(shù),則()A.函數(shù)在上單調(diào)遞增B.函數(shù)上有兩個零點C.函數(shù)有極大值16D.函數(shù)有最小值12.命題的否定是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知圓的半徑為3,,為該圓的兩條切線,為切點,則的最小值為___________.14.一條光線從點射出,經(jīng)x軸反射,其反射光線所在直線與圓相切,則反射光線所在的直線方程為____.15.已知直線與圓相切,則__________.16.2021年7月,某市發(fā)生德爾塔新冠肺炎疫情,市衛(wèi)健委決定在全市設(shè)置多個核酸檢測點對全市人員進(jìn)行核酸檢測.已知組建一個小型核酸檢測點需要男醫(yī)生1名,女醫(yī)生3名,每小時可做200人次的核酸檢測,組建一個大型核酸檢測點需要男醫(yī)生3名,女醫(yī)生3名.每小時可做300人次的核酸檢測.某三甲醫(yī)院決定派出男醫(yī)生10名、女醫(yī)生18名去做核酸檢測工作,則這28名醫(yī)生需要組建________個小型核酸檢測點和________個大型核酸檢測點,才能更高效的完成本次核酸檢測工作.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在平面直角標(biāo)系中,已知n個圓與x軸和線均相切,且任意相鄰的兩個圓外切,其中圓.(1)求數(shù)列通項公式;(2)記n個圓的面積之和為S,求證:.18.(12分)如圖,在三棱柱中,=2,且,⊥底面ABC.E為AB中點(1)求證:平面;(2)求平面與平面CEB夾角的余弦值19.(12分)已知橢圓的焦距為4,點在G上.(1)求橢圓G方程;(2)過橢圓G右焦點的直線l與橢圓G交于M,N兩點,O為坐標(biāo)原點,若,求直線l的方程.20.(12分)在△ABC中,角A,B,C所對的邊為a,b,c,其中,,且(1)求角B的值;(2)若,判斷△ABC的形狀21.(12分)在①成等差數(shù)列;②成等比數(shù)列;③這三個條件中任選一個,補充在下面的問題中,并對其求解.問題:已知為數(shù)列的前項和,,且___________.(1)求數(shù)列的通項公式;(2)記,求數(shù)列的前項和.注:如果選擇多個條件分別解答,按第一個解答計分.22.(10分)已知函數(shù)的兩個極值點之差的絕對值為.(1)求的值;(2)若過原點的直線與曲線在點處相切,求點的坐標(biāo).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】求出,根據(jù)點到直線的距離的向量公式進(jìn)行求解.【詳解】因為,為的一個方向向量,所以點到直線的距離.故選:B2、C【解析】設(shè)這個二面角的度數(shù)為,由題意得,從而得到,由此能求出結(jié)果.【詳解】設(shè)這個二面角的度數(shù)為,由題意得,,,解得,∴,∴這個二面角的度數(shù)為,故選:C.【點睛】本題考查利用向量的幾何運算以及數(shù)量積研究面面角.3、D【解析】結(jié)合導(dǎo)數(shù)以及函數(shù)的奇偶性判斷出的單調(diào)性,由此化簡不等式來求得不等式的解集.【詳解】當(dāng)時,單調(diào)遞增,,所以單調(diào)遞增.因為是偶函數(shù),所以當(dāng)時,單調(diào)遞減.,,,或.即不等式的解集為.故選:D4、A【解析】與已知直線平行,與橢圓相切的直線有二條,一條距離最短,一條距離最長,利用相切,求出直線的常數(shù)項,再計算平行線間的距離即可.【詳解】設(shè)與已知直線平行,與橢圓相切的直線為,則所以所以橢圓上點P到直線的最短距離為故選:A5、C【解析】根據(jù)兩直線垂直時斜率乘積為,可以直接求出所求直線的斜率,再根據(jù)點斜式求出直線方程,最后化成一般式方程即可.【詳解】因為直線的斜率為,故所求直線的斜率等于,所求直線的方程為,即,故選:C6、D【解析】根據(jù)給定條件結(jié)合橢圓定義求出,再判斷形狀計算作答.【詳解】橢圓C:的半焦距,長半軸長,由橢圓定義得,而,且,則有是直角三角形,,所以的面積為24.故選:D7、C【解析】因為線段D1Q與OP互相平分,所以四點O,Q,P,D1共面,且四邊形OQPD1為平行四邊形.若P在線段C1D1上時,Q一定在線段ON上運動,只有當(dāng)P為C1D1的中點時,Q與點M重合,此時λ=1,符合題意若P在線段C1B1與線段B1A1上時,在平面ABCD找不到符合條件Q;在P在線段D1A1上時,點Q在直線OM上運動,只有當(dāng)P為線段D1A1的中點時,點Q與點M重合,此時λ=0符合題意,所以符合條件的λ值有兩個故選C.8、D【解析】將拋物線方程化標(biāo)準(zhǔn)形式后得到焦準(zhǔn)距,可得結(jié)果.【詳解】由得,所以,所以,所以拋物線的焦點坐標(biāo)為.故選:D.【點睛】關(guān)鍵點點睛:將拋物線方程化為標(biāo)準(zhǔn)形式是解題關(guān)鍵.9、C【解析】由,可得,,故選C.考點:指數(shù)函數(shù)性質(zhì)10、C【解析】利用全稱命題的否定可得出結(jié)論.【詳解】由全稱命題的否定可知,命題“,”的否定是“,”.故選:C.11、C【解析】對求導(dǎo),研究的單調(diào)性以及極值,再結(jié)合選項即可得到答案.【詳解】,由,得或,由,得,所以在上遞增,在上遞減,在上遞增,所以極大值為,極小值為,所以有3個零點,且無最小值.故選:C12、C【解析】根據(jù)含全稱量詞命題的否定可寫出結(jié)果.【詳解】全稱命題的否定是特稱命題,所以命題的否定是.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè)(),,則,,,根據(jù)數(shù)量積的定義和余弦的二倍角公式結(jié)合基本不等式即可求解詳解】如圖所示,設(shè)(),,則,,,,當(dāng)且僅當(dāng)即時等號成立,∴的最小值是.故答案為:14、或【解析】點關(guān)于軸的對稱點為,即反射光線過點,分別討論反射光線的斜率存在與不存在的情況,進(jìn)而求解即可【詳解】點關(guān)于軸的對稱點為,(1)設(shè)反射光線的斜率為,則反射光線的方程為,即,因為反射光線與圓相切,所以圓心到反射光線的距離,即,解得,所以反射光線方程為:;(2)當(dāng)不存在時,反射光線,此時,也與圓相切,故答案為:或【點睛】本題考查直線在光學(xué)中的應(yīng)用,考查圓的切線方程15、【解析】由直線與圓相切,結(jié)合點到直線的距離公式求解即可.【詳解】由直線與圓相切,所以圓心到直線l的距離等于半徑r,即.故答案為:16、①.4②.2【解析】根據(jù)題意建立不等式組,進(jìn)而作出可行域,最后通過數(shù)形結(jié)合求得答案.【詳解】設(shè)需要組建個小型核酸檢測點和個大型核酸檢測點,則每小時做核酸檢測的最高人次,作出可行域如圖中陰影部分所示,由圖可見當(dāng)直線過點A時,z取得最大值,由得恰為整數(shù)點,所以組建4個小型核酸檢測點和2個大型核酸檢測點,才能更高效的完成本次核酸檢測工作.故答案為:4;2.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1).(2)證明見解析.【解析】(1)由已知得,設(shè)圓分別切軸于點,過點作,垂足為.在從而有得,由等比數(shù)列的定義得數(shù)列是以為首項,為公比的等比數(shù)列.由此求得答案;(2)由(1)得再由圓的面積公式和等比數(shù)列求和公式計算可得證.【小問1詳解】解:直線的傾斜角為則圓心在直線上,,設(shè)圓分別切軸于點,過點作,垂足為.在中,所以即化簡得,變形得,所以是以為首項,為公比的等比數(shù)列.,.【小問2詳解】解:由(1)得所以,所以.18、(1)證明見解析;(2).【解析】(1)連接與交于點O,連接OE,得到,再利用線面平行的判定定理證明即可;(2)根據(jù),底面,建立空間直角坐標(biāo)系,求得平面的一個法向量,再根據(jù)底面,得到平面一個法向量,然后由夾角公式求解.【小問1詳解】如圖所示:連接與交于點O,連接OE,如圖,由分別為的中點所以,又平面,平面,所以平面;【小問2詳解】由,底面,故底面建立如圖所示空間直角坐標(biāo)系:則,所以,設(shè)平面的一個法向量為:,則,即,令,則,則,因為底面,所以為平面一個法向量,所以所以平面與平面CEB夾角的余弦值為.19、(1);(2).【解析】(1)根據(jù)已知求出即得橢圓的方程;(2)設(shè)l的方程為,,,聯(lián)立直線和橢圓的方程得到韋達(dá)定理,根據(jù)得到,即得直線l的方程.【小問1詳解】解:橢圓的焦距是4,所以焦點坐標(biāo)是,.因為點在G上,所以,所以,.所以橢圓G的方程是.【小問2詳解】解:顯然直線l不垂直于x軸,可設(shè)l的方程為,,,將直線l的方程代入橢圓G的方程,得,則,.因為,所以,則,即,由,得,.所以,解得,即,所以直線l的方程為.20、(1)(2)等邊三角形【解析】(1)把化為,然后由正弦定理化邊為角,利用兩角和的正弦公式、誘導(dǎo)公式可求得;(2)由余弦定理及三角形面積公式可得,從而得出三角形為等邊三角形【小問1詳解】∵,∴由正弦定理得,∵,∴,∴,又,所以,可得;【小問2詳解】由(1)知余弦定理,①,②由①②可得:,又,所以,所以該三角形為等邊三角形21、(1)(2)【解析】(1)由可知數(shù)列是公比為的等比數(shù)列,若選①:結(jié)合等差數(shù)列等差中項的性質(zhì)計算求解;若選②:利用等比數(shù)列等比中項的性質(zhì)計算求解,若選③:利用直接計算;(2)根據(jù)對數(shù)的運算,可知數(shù)列為等差數(shù)列,直接求和即可.小問1詳解】由,當(dāng)時,,即,即,所以數(shù)列是公比為的等比數(shù)列,若選①:由,即,,所以數(shù)列的通項公式為;若選②:由,所以,所以數(shù)列的通項公式為;若選③:由,即,所以數(shù)列的通項公式為;【小問2詳解】由(1)得,所以數(shù)列等差數(shù)列,所以.22、(1);(2).【解析】(1)求,設(shè)的兩根分別為,,由韋
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 建筑裝修勞務(wù)分包合同范本
- 2024年小吃檔口的承包合同協(xié)議書
- 代理配股繳款協(xié)議專業(yè)版
- 家庭住宅客戶專用
- 正式授權(quán)加工合同書
- 房產(chǎn)中介銷售代理合同范例
- 電臺合作協(xié)議范本新
- 委托投資合同協(xié)議書模板
- 長期出租協(xié)議
- 改進(jìn)版用工合同格式
- 4.3《課間》 (教案)-2024-2025學(xué)年一年級上冊數(shù)學(xué)北師大版
- 【班主任工作】2024-2025學(xué)年秋季安全主題班會教育周記錄
- 2024-2030年街舞培訓(xùn)行業(yè)市場發(fā)展分析及發(fā)展趨勢前景預(yù)測報告
- 橡膠壩工程施工質(zhì)量驗收評定表及填表說明
- 《2024版CSCO胰腺癌診療指南》更新要點 2
- +陜西省渭南市富平縣2023-2024學(xué)年九年級上學(xué)期摸底數(shù)學(xué)試卷
- 2023年法律職業(yè)資格《客觀題卷一》真題及答案
- 公司培訓(xùn)工作報告6篇
- 2024中國民航機(jī)場建設(shè)集團(tuán)限公司校園招聘304人高頻考題難、易錯點模擬試題(共500題)附帶答案詳解
- 血液透析患者安全管理應(yīng)急預(yù)案及處理課件
- 音樂治療服務(wù)行業(yè)發(fā)展趨勢及前景展望分析報告
評論
0/150
提交評論