版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
湖南省湘潭市名校2023年高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖所示,在中,,,,AD為BC邊上的高,;若,則的值為()A. B.C. D.2.丹麥數(shù)學(xué)家琴生(Jensen)是19世紀(jì)對數(shù)學(xué)分析作出卓越貢獻(xiàn)的巨人,特別是在函數(shù)的凸凹性與不等式方面留下了很多寶貴的成果.設(shè)函數(shù)在區(qū)間內(nèi)的導(dǎo)函數(shù)為,在區(qū)間內(nèi)的導(dǎo)函數(shù)為,在區(qū)間內(nèi)恒成立,則稱函數(shù)在區(qū)間內(nèi)為“凸函數(shù)”,則下列函數(shù)在其定義域內(nèi)是“凸函數(shù)”的是()A. B.C. D.3.從2,4中選一個(gè)數(shù)字,從1,3,5中選兩個(gè)數(shù)字,組成無重復(fù)數(shù)字的三位數(shù)的個(gè)數(shù)為()A.48 B.36C.24 D.184.如圖,奧運(yùn)五環(huán)由5個(gè)奧林匹克環(huán)套接組成,環(huán)從左到右互相套接,上面是藍(lán)、黑、紅環(huán),下面是黃,綠環(huán),整個(gè)造形為一個(gè)底部小的規(guī)則梯形.為迎接北京冬奧會召開,某機(jī)構(gòu)定制一批奧運(yùn)五環(huán)旗,已知該五環(huán)旗的5個(gè)奧林匹克環(huán)的內(nèi)圈半徑為1,外圈半徑為1.2,相鄰圓環(huán)圓心水平距離為2.6,兩排圓環(huán)圓心垂直距離為1.1,則相鄰兩個(gè)相交的圓的圓心之間的距離為()A. B.2.8C. D.2.95.已知正項(xiàng)等比數(shù)列的前項(xiàng)和為,且,則的最小值為()A. B.C. D.6.?dāng)?shù)學(xué)家歐拉在1765年發(fā)現(xiàn),任意三角形的外心、重心、垂心位于同一條直線上,這條直線稱為歐拉線.已知的頂點(diǎn),,若其歐拉線的方程為,則頂點(diǎn)的坐標(biāo)為()A. B.C. D.7.已知是和的等比中項(xiàng),則圓錐曲線的離心率為()A. B.或2C. D.或8.一動圓與圓外切,而與圓內(nèi)切,那么動圓的圓心的軌跡是()A.橢圓 B.雙曲線C.拋物線 D.雙曲線的一支9.空間四點(diǎn)共面,但任意三點(diǎn)不共線,若為該平面外一點(diǎn)且,則實(shí)數(shù)的值為()A. B.C. D.10.下列命題錯(cuò)誤的是()A,B.命題“”的否定是“”C.設(shè),則“且”是“”的必要不充分條件D.設(shè),則“”是“”的必要不充分條件11.從編號為1~120的商品中利用系統(tǒng)抽樣的方法抽8件進(jìn)行質(zhì)檢,若所抽樣本中含有編號66的商品,則下列編號一定被抽到的是()A.111 B.52C.37 D.812.已知等比數(shù)列中,,則由此數(shù)列的奇數(shù)項(xiàng)所組成的新數(shù)列的前項(xiàng)和為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè),若,則S=________.14.已知一個(gè)樣本數(shù)據(jù)為3,3,5,5,5,7,7,現(xiàn)在新加入一個(gè)3,一個(gè)5,一個(gè)7得到一個(gè)新樣本,則與原樣本數(shù)據(jù)相比,新樣本數(shù)據(jù)平均數(shù)______,方差______.(“變大”、“變小”、“不變”)15.以點(diǎn)為圓心,且與直線相切的圓的方程是__________16.正四棱柱的高為底面邊長的倍,則其體對角線與底面所成角的大小為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓C:,圓C與x軸交于A,B兩點(diǎn)(1)求直線y=x被圓C所截得的弦長;(2)圓M過點(diǎn)A,B,且圓心在直線y=x+1上,求圓M的方程18.(12分)已知數(shù)列滿足,.(1)證明:數(shù)列為等差數(shù)列.(2)求數(shù)列的前項(xiàng)和.19.(12分)已知數(shù)列的前n項(xiàng)和為,且.(1)求數(shù)列的通項(xiàng)公式;(2)若,設(shè),求數(shù)列的前n項(xiàng)和.20.(12分)已知數(shù)列滿足,數(shù)列為等差數(shù)列,,前4項(xiàng)和.(1)求數(shù)列,的通項(xiàng)公式;(2)求和:.21.(12分)設(shè)函數(shù).(1)求在處的切線方程;(2)求的極小值點(diǎn)和極大值點(diǎn).22.(10分)已知等差數(shù)列滿足,(1)求數(shù)列的通項(xiàng)公式及前10項(xiàng)和;(2)等比數(shù)列滿足,,求和:
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】根據(jù)題意求得,化簡得到,結(jié)合,求得的值,即可求解.【詳解】在中,,,,AD為BC邊上的高,可得,由又因?yàn)?,所以,所?故選:B.2、B【解析】根據(jù)基本初等函數(shù)的導(dǎo)函數(shù)公式求各函數(shù)二階導(dǎo)函數(shù),判斷其在定義域上是否恒有,即可知正確選項(xiàng).【詳解】A:,則,顯然定義域內(nèi)有正有負(fù),故不是“凸函數(shù)”;B:,則,故是“凸函數(shù)”;C:,則,故不是“凸函數(shù)”;D:,則,顯然定義域內(nèi)有正有負(fù),故不是“凸函數(shù)”;故選:B3、B【解析】直接利用乘法分步原理分三步計(jì)算即得解.【詳解】從中選一個(gè)數(shù)字,有種方法;從中選兩個(gè)數(shù)字,有種方法;組成無重復(fù)數(shù)字的三位數(shù),有個(gè).故選:B4、C【解析】根據(jù)題意作出輔助線直接求解即可.【詳解】如圖所示,由題意可知,在中,取的中點(diǎn),連接,所以,,又因?yàn)?,所以,所以即相鄰兩個(gè)相交的圓的圓心之間的距離為.故選:C5、B【解析】設(shè)等比數(shù)列的公比為,則,由可得,可得出,利用基本不等式可求得結(jié)果.【詳解】設(shè)等比數(shù)列的公比為,則,因?yàn)?,則,所以,,則,當(dāng)且僅當(dāng)時(shí),等號成立.故選:B.6、A【解析】設(shè),計(jì)算出重心坐標(biāo)后代入歐拉方程,再求出外心坐標(biāo),根據(jù)外心的性質(zhì)列出關(guān)于的方程,最后聯(lián)立解方程即可.【詳解】設(shè),由重心坐標(biāo)公式得,三角形的重心為,,代入歐拉線方程得:,整理得:①的中點(diǎn)為,,的中垂線方程為,即聯(lián)立,解得的外心為則,整理得:②聯(lián)立①②得:,或,當(dāng),時(shí),重合,舍去頂點(diǎn)的坐標(biāo)是故選:A【點(diǎn)睛】關(guān)鍵點(diǎn)睛:解決本題的關(guān)鍵一是求出外心,二是根據(jù)外心的性質(zhì)列方程.7、B【解析】由等比中項(xiàng)的性質(zhì)可得,分別計(jì)算曲線的離心率.【詳解】由是和的等比中項(xiàng),可得,當(dāng)時(shí),曲線方程為,該曲線為焦點(diǎn)在軸上的橢圓,離心率,當(dāng)時(shí),曲線方程為,該曲線為焦點(diǎn)在軸上的雙曲線,離心率,故選:B.8、A【解析】依據(jù)定義法去求動圓的圓心的軌跡即可解決.【詳解】設(shè)動圓的半徑為r,又圓半徑為1,圓半徑為8,則,,可得,又則動圓的圓心的軌跡是以為焦點(diǎn)長軸長為9的橢圓.故選:A9、A【解析】由空間向量共面定理構(gòu)造方程求得結(jié)果.【詳解】空間四點(diǎn)共面,但任意三點(diǎn)不共線,,解得:.故選:A.10、C【解析】根據(jù)題意,對四個(gè)選項(xiàng)一一進(jìn)行分析,舉出例子當(dāng)時(shí),,即可判斷A選項(xiàng);根據(jù)特稱命題的否定為全稱命題,可判斷B選項(xiàng);根據(jù)充分條件和必要條件的定義,即可判斷CD選項(xiàng).【詳解】解:對于A,當(dāng)時(shí),,,故A正確;對于B,根據(jù)特稱命題的否定為全稱命題,得“”的否定是“”,故B正確;對于C,當(dāng)且時(shí),成立;當(dāng)時(shí),卻不一定有且,如,因此“且”是“”的充分不必要條件,故C錯(cuò)誤;對于D,因?yàn)楫?dāng)時(shí),有可能等于0,當(dāng)時(shí),必有,所以“”是“”的必要不充分條件,故D正確.故選:C.11、A【解析】先求出等距抽樣的組距,從而得到被抽到的是,從而求出答案.【詳解】120件商品中抽8件,故,因?yàn)楹芯幪?6的商品被抽到,故其他能被抽到的是,當(dāng)時(shí),,其他三個(gè)選項(xiàng)均不合要求,故選:A12、B【解析】確實(shí)新數(shù)列是等比數(shù)列及公比、首項(xiàng)后,由等比數(shù)列前項(xiàng)和公式計(jì)算,【詳解】由題意,新數(shù)列為,所以,,前項(xiàng)和為故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、1007【解析】可證f(x)+f(1﹣x)=1,由倒序相加法可得所求為1007對的組合,即1007個(gè)1,可得答案【詳解】解:∵函數(shù)f(x),∴f(x)+f(1﹣x)1故可得S=f()+f()…+f()=1007×1=1007,故答案為:1007點(diǎn)睛】本題考查倒序相加法求和,推斷出f(x)+f(1﹣x)=1是解題的關(guān)鍵.14、①.不變②.變大【解析】通過計(jì)算平均數(shù)和方差來確定正確答案.【詳解】原樣本平均數(shù)為,原樣本方差為,新樣本平均數(shù)為,新樣本方差為.所以平均數(shù)不變,方差變大.故答案為:不變;變大15、;【解析】根據(jù)相切可得圓心到直線距離即為圓的半徑,利用點(diǎn)到直線距離公式解出半徑,即可得到圓的方程【詳解】由題,設(shè)圓心到直線的距離為,所以,因?yàn)閳A與直線相切,則,所以圓的方程為,故答案為:【點(diǎn)睛】本題考查利用直線與圓的位置關(guān)系求圓的方程,考查點(diǎn)到直線距離公式的應(yīng)用16、##【解析】如圖所示,其體對角線與底面所成角為,解三角形即得解.【詳解】解:如圖所示,設(shè),所以.由題得平面,則其體對角線與底面所成角為,因?yàn)?所以.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)已知條件,結(jié)合垂徑定理,以及點(diǎn)到直線的距離公式,即可求解(2)根據(jù)已知圓的方程,令y=0,結(jié)合韋達(dá)定理,求出圓心的橫坐標(biāo),即可求出圓心,再結(jié)合勾股定理,即可求出半徑【小問1詳解】∵圓C:,∴,即圓心為(-1,1),半徑r=3,∵直線y=x,即x-y=0,∴圓心(-1,1)到直線x-y=0的距離d=,∴直線y=x被圓C所截得的弦長為=【小問2詳解】設(shè)A(x1,y1),B(x2,y2),∵圓C:,圓C與x軸交于A,B兩點(diǎn),∴x2-2x-7=0,則,|x1-x2|==,∴圓心的橫坐標(biāo)為x=,∵圓心在直線y=x+1上,∴圓心為(1,2),∴半徑r=,故圓M的方程為18、(1)證明見解析(2)【解析】(1)由結(jié)合等差數(shù)列的定義證明即可;(2)由結(jié)合錯(cuò)位相減法得出前項(xiàng)和.【小問1詳解】在兩邊同時(shí)除以,得:,,故數(shù)列是以1為首項(xiàng),1為公差的等差數(shù)列;【小問2詳解】由(1)得:,,①②①②得:所以.19、(1)(2).【解析】(1)由數(shù)列的前n項(xiàng)和與通項(xiàng)公式之間的關(guān)系即可完成.(2)由錯(cuò)位相減法即可解決此類“差比”數(shù)列的求和.【小問1詳解】由,得當(dāng)時(shí),,上下兩式相減得,,又當(dāng)時(shí),滿足上式,所以數(shù)列的通項(xiàng)公式;【小問2詳解】由(1)可知,所以,則,上下兩式相減得,所以.20、(1),;(2).【解析】(1)根據(jù)等比數(shù)列的定義,結(jié)合等差數(shù)列的基本量,即可容易求得數(shù)列,的通項(xiàng)公式;(2)根據(jù)(1)中所求,構(gòu)造數(shù)列,證明其為等比數(shù)列,利用等比數(shù)列的前項(xiàng)和即可求得結(jié)果.【小問1詳解】因?yàn)閿?shù)列滿足,故可得數(shù)列為等比數(shù)列,且公比,則;數(shù)列為等差數(shù)列,,前4項(xiàng)和,設(shè)其公差為,故可得,解得,則;綜上所述,,.【小問2詳解】由(1)可知:,,故,又,又,則是首項(xiàng)1,公比為的等比數(shù)列;則.21、(1);(2)極大值點(diǎn),極小值點(diǎn).【解析】(1)求函數(shù)的導(dǎo)數(shù),利用函數(shù)的導(dǎo)數(shù)求出切線的斜率,結(jié)合切點(diǎn)坐標(biāo),然后求解切線方程;(2)利用導(dǎo)數(shù)研究f(x)的單調(diào)性,判斷函數(shù)的極值點(diǎn)即可【小問1詳解】函數(shù),函數(shù)的導(dǎo)數(shù)為,,在處的切線方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 某高速公路出入口封閉期交通引導(dǎo)牌設(shè)置方案
- 腦積水患者護(hù)理常規(guī)
- 奶茶店勞務(wù)合同(2篇)
- 大學(xué)畢業(yè)前實(shí)習(xí)合同(2篇)
- 北師大版六年級數(shù)學(xué)上冊期末試卷1及答案
- 老年護(hù)理聽力障礙
- 水泥砂漿找平層施工方案
- 《智能網(wǎng)聯(lián)汽車智能傳感器測試與裝調(diào)》試題-項(xiàng)目二 超聲波雷達(dá)的裝調(diào)與檢修
- 腦梗死的護(hù)理面試技巧
- 2012年寧夏中考數(shù)學(xué)試卷(學(xué)生版)
- 2024年中國兩輪電動車社區(qū)充電行業(yè)研究報(bào)告 -頭豹
- 建筑工地突發(fā)事件處理預(yù)案
- 醫(yī)學(xué)教程 膽囊癌診治課件
- 山西省運(yùn)城市2024-2025學(xué)年高二上學(xué)期10月月考英語試題
- 4.3《課間》 (教案)-2024-2025學(xué)年一年級上冊數(shù)學(xué)北師大版
- 【班主任工作】2024-2025學(xué)年秋季安全主題班會教育周記錄
- 2024-2030年街舞培訓(xùn)行業(yè)市場發(fā)展分析及發(fā)展趨勢前景預(yù)測報(bào)告
- 橡膠壩工程施工質(zhì)量驗(yàn)收評定表及填表說明
- 《2024版CSCO胰腺癌診療指南》更新要點(diǎn) 2
- +陜西省渭南市富平縣2023-2024學(xué)年九年級上學(xué)期摸底數(shù)學(xué)試卷
- 2023年法律職業(yè)資格《客觀題卷一》真題及答案
評論
0/150
提交評論