版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖南省寧鄉(xiāng)市2024屆高二數(shù)學第一學期期末調(diào)研試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知隨機變量X,Y滿足,,且,則的值為()A.0.2 B.0.3C.0..5 D.0.62.△ABC兩個頂點坐標A(-4,0),B(4,0),它的周長是18,則頂點C的軌跡方程是()A. B.(y≠0)C. D.3.如果命題為真命題,為假命題,那么()A.命題,都是真命題 B.命題,都是假命題C.命題,至少有一個是真命題 D.命題,只有一個是真命題4.已知數(shù)列滿足且,則()A.是等差數(shù)列 B.是等比數(shù)列C.是等比數(shù)列 D.是等比數(shù)列5.已知為等差數(shù)列,為其前n項和,,則下列和與公差無關(guān)的是()A. B.C. D.6.橢圓的一個焦點坐標為,則()A.2 B.3C.4 D.87.已知直線在x軸和y軸上的截距相等,則a的值是()A或1 B.或C. D.18.某公司要建造一個長方體狀的無蓋箱子,其容積為48m3,高為3m,如果箱底每1m2的造價為15元,箱壁每1m2造價為12元,則箱子的最低總造價為()A.72元 B.300元C.512元 D.816元9.已知橢圓的長軸長,短軸長,焦距長成等比數(shù)列,則橢圓離心率為()A. B.C. D.10.方程所表示的曲線為()A.射線 B.直線C.射線或直線 D.無法確定11.若方程表示焦點在軸上的雙曲線,則角所在象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限12.橢圓焦距為()A. B.8C.4 D.二、填空題:本題共4小題,每小題5分,共20分。13.若橢圓的焦點在軸上,過點作圓的切線,切點分別為,,直線恰好經(jīng)過橢圓的上焦點和右頂點,則橢圓的方程是________________14.如圖①,用一個平面去截圓錐,得到的截口曲線是橢圓.許多人從純幾何的角度出發(fā)對這個問題進行過研究,其中比利時數(shù)學家(1794-1847)的方法非常巧妙,極具創(chuàng)造性.在圓錐內(nèi)放兩個大小不同的球,使得它們分別與圓錐的側(cè)面,截面相切,兩個球分別與截面相切于,在截口曲線上任取一點,過作圓錐的母線,分別與兩個球相切于,由球和圓的幾何性質(zhì),可以知道,,于是.由的產(chǎn)生方法可知,它們之間的距離是定值,由橢圓定義可知,截口曲線是以為焦點的橢圓.如圖②,一個半徑為2的球放在桌面上,桌面上方有一個點光源,則球在桌面上的投影是橢圓.已知是橢圓的長軸,垂直于桌面且與球相切,,則橢圓的離心率為___________.15.若動直線分別與函數(shù)和的圖像交于A,B兩點,則的最小值為______16.已知雙曲線:的左、右焦點分別為,,為的右支上一點,且,則的離心率為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列滿足,(1)設(shè),求證:數(shù)列是等比數(shù)列;(2)求數(shù)列的前項和18.(12分)如圖,已知四棱臺的上、下底面分別是邊長為2和4的正方形,,且底面,點分別在棱、上·(1)若P是的中點,證明:;(2)若平面,二面角的余弦值為,求四面體的體積19.(12分)已知數(shù)列的前n項和為,且.(1)求的通項公式;.(2)求數(shù)列的前n項和.20.(12分)已知函數(shù).(1)求函數(shù)的極值;(2)若對恒成立,求實數(shù)a的取值范圍.21.(12分)在等比數(shù)列中,已知,(1)若,求數(shù)列的前項和;(2)若以數(shù)列中的相鄰兩項,構(gòu)造雙曲線,求證:雙曲線系中所有雙曲線的漸近線、離心率都相同22.(10分)已知動圓過定點,且與直線相切.(1)求動圓圓心的軌跡的方程;(2)直線過點與曲線相交于兩點,問:在軸上是否存在定點,使?若存在,求點坐標,若不存在,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】利用正態(tài)分布的計算公式:,【詳解】且又故選:D2、D【解析】根據(jù)三角形的周長得出,再由橢圓的定義得頂點C的軌跡為以A,B為焦點的橢圓,去掉A,B,C共線的情況,可求得頂點C的軌跡方程.【詳解】因為,所以,所以頂點C的軌跡為以A,B為焦點的橢圓,去掉A,B,C共線的情況,即,所以頂點C的軌跡方程是,故選:D.【點睛】本題考查橢圓的定義,由定義求得動點的軌跡方程,求解時,注意去掉不滿足的點,屬于基礎(chǔ)題.3、D【解析】由命題為真命題,可判斷二者至少有一個為真命題,由為假命題,可判斷二者至少有一個為假命題,由此可得答案.【詳解】命題為真命題,說明二者至少有一個為真命題,為假命題,說明二者至少有一個為假命題,綜合上述,可知命題,只有一個是真命題,故選:D4、D【解析】由,化簡得,結(jié)合等比數(shù)列、等差數(shù)列的定義可求解.【詳解】由,可得,所以,又由,,所以是首項為,公比為2的等比數(shù)列,所以,,,,所以不是等差數(shù)列;不等于常數(shù),所以不是等比數(shù)列.故選:D.5、C【解析】依題意根據(jù)等差數(shù)列的通項公式可得,再根據(jù)等差數(shù)列前項和公式計算可得;【詳解】解:因為,所以,即,所以,,,,故選:C6、D【解析】由條件可得,,,,由關(guān)系可求值.【詳解】∵橢圓方程為:,∴,∴,,∵橢圓的一個焦點坐標為,∴,又,∴,∴,故選:D.7、A【解析】分截距都為零和都不為零討論即可.【詳解】當截距都為零時,直線過原點,;當截距不為零時,,.綜上:或.故選:A.8、D【解析】設(shè)這個箱子的箱底的長為xm,則寬為m,設(shè)箱子總造價為f(x)元,則f(x)=72(x)+240,由此利用均值不等式能求出箱子的最低總造價【詳解】設(shè)這個箱子的箱底的長為xm,則寬為m,設(shè)箱子總造價為f(x)元,∴f(x)=15×16+12×3(2x)=72(x)+240≥144240=816,當且僅當x,即x=4時,f(x)取最小值816元故選:D9、A【解析】由題意,,結(jié)合,求解即可【詳解】∵橢圓的長軸長,短軸長,焦距長成等比數(shù)列∴∴又∵∴∴,即∴e=又在橢圓e>0∴e=故選:A10、C【解析】將方程化為或,由此可得所求曲線.【詳解】由得:或,即或,方程所表示的曲線為射線或直線.故選:C.11、D【解析】根據(jù)題意得出的符號,進而得到的象限.【詳解】由題意,,所以在第四象限.故選:D.12、A【解析】由題意橢圓的焦點在軸上,故,求解即可【詳解】由題意,,故橢圓的焦點在軸上故焦距故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè)過點的圓的切線為,分類討論求得直線分別與圓的切線,求得直線的方程,從而得到直線與軸、軸的交點坐標,得到橢圓的右焦點和上頂點,進而求得橢圓的方程.【詳解】設(shè)過點的圓的切線分別為,即,當直線與軸垂直時,不存在,直線方程為,恰好與圓相切于點;當直線與軸不垂直時,原點到直線的距離為,解得,此時直線的方程為,此時直線與圓相切于點,因此,直線的斜率為,直線的方程為,所以直線交軸交于點,交于軸于點,橢圓的右焦點為,上頂點為,所以,可得,所以橢圓的標準方程為.故答案為:.14、##0.5【解析】利用球與圓錐相切,得出截面,在平面圖形中求解,以及圓錐曲線的來源來理解切點為橢圓的一個焦點,求出,得出離心率.【詳解】設(shè)球切于,切于E,,球半徑為2,所以,,∴,又中,,,故橢圓長軸長為,,根據(jù)橢圓在圓錐中截面與二球相切的切點為橢圓的焦點知:球O與相切的切點為橢圓的一個焦點,且,,橢圓的離心率為.故答案:.15、【解析】利用導(dǎo)數(shù)求出與平行的曲線的切線,再利用兩點間距離公式進行求解即可.【詳解】設(shè)曲線的切點為,由,所以曲線的切線的斜率為,直線的斜率為,當切線與平行時,即,即切點為,當直線過切點時,有最小值,即,此時,解方程組:,,故答案為:【點睛】關(guān)鍵點睛:利用曲線的切線性質(zhì)進行求解是解題的關(guān)鍵.16、【解析】由雙曲線定義可得a,代入點P坐標可得b,然后可解.【詳解】由題知,故,又點在雙曲線上,所以,解得,所以.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)將變形為,得到為等比數(shù)列,(2)由(1)得到的通項公式,用錯位相減法求得【詳解】(1)由,,可得,因為則,,可得是首項為,公比為的等比數(shù)列,(2)由(1),由,可得,,,上面兩式相減可得:,則【點睛】數(shù)列求和的方法技巧:(1)倒序相加:用于等差數(shù)列、與二項式系數(shù)、對稱性相關(guān)聯(lián)的數(shù)列的求和(2)錯位相減:用于等差數(shù)列與等比數(shù)列的積數(shù)列的求和(3)分組求和:用于若干個等差或等比數(shù)列和或差數(shù)列的求和(4)裂項相消法:用于通項能變成兩個式子相減,求和時能前后相消的數(shù)列求和.18、(1)證明見解析(2)【解析】(1)建立空間直角坐標系,利用空間向量的坐標運算知,即可證得結(jié)論;(2)利用空間向量結(jié)合已知的面面角余弦值可求得,再利用線面平行的已知條件求得,再將四面體視為以為底面的三棱錐,利用錐體的體積公式即可得解.【小問1詳解】以為坐標原點,,,所在直線分別為,,軸建立空間直角坐標系,則,,,,設(shè),其中,,若是的中點,則,,,于是,∴,即【小問2詳解】由題設(shè)知,,,是平面內(nèi)的兩個不共線向量設(shè)是平面的一個法向量,則,取,得又平面的一個法向量是,∴,而二面角的余弦值為,因此,解得或(舍去),此時設(shè),而,由此得點,,∵平面,且平面的一個法向量是,∴,即,解得,從而將四面體視為以為底面的三棱錐,則其高,故四面體的體積【點睛】方法點睛:求空間角的常用方法:(1)定義法:由異面直線所成角、線面角、二面角的定義,結(jié)合圖形,作出所求空間角,再結(jié)合題中條件,解對應(yīng)的三角形,即可求出結(jié)果;(2)向量法:建立適當?shù)目臻g直角坐標系,通過計算向量的夾角(兩直線的方向向量、直線的方向向量與平面的法向量、兩平面的法向量)的余弦值,即可求得結(jié)果.19、(1);(2).【解析】(1)根據(jù)給定條件結(jié)合當時,探求數(shù)列的性質(zhì)即可計算作答.(2)由(1)求出,再利用錯位相減法計算作答.小問1詳解】依題意,當時,因為,則,當時,,解得,于是得數(shù)列是以1為首項,為公比的等比數(shù)列,則,所以的通項公式是.【小問2詳解】由(1)可知,,則,因此,兩式相減得:,于是得,所以數(shù)列的前n項和.20、(1)極大值為,無極小值(2)【解析】(1)求函數(shù)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)的正負判斷極值點,代入原函數(shù)計算即可;(2)將變形,即對恒成立,然后構(gòu)造函數(shù),利用求導(dǎo)判定函數(shù)的單調(diào)性,進而確定實數(shù)a的取值范圍..【小問1詳解】對函數(shù)求導(dǎo)可得:,可知當時,時,,即可知在上單調(diào)遞增,在上單調(diào)遞減由上可知,的極大值為,無極小值【小問2詳解】由對恒成立,當時,恒成立;當時,對恒成立,可變形為:對恒成立,令,則;求導(dǎo)可得:由(1)知即恒成立,當時,,則在上單調(diào)遞增;又,因,故,,所以在上恒成立,當時,令,得,當時,在上單調(diào)遞增,當時,在上單調(diào)遞減,從而可知的最大值為,即,因此,對都有恒成立,所以,實數(shù)a的取值范圍是.21、(1);(2)證明過程見解析.【解析】(1)根據(jù)等比數(shù)列的通項公式,結(jié)合對數(shù)的運算性質(zhì)、等比數(shù)列和等差數(shù)列前項和公式進行求解即可;(2)根據(jù)等比數(shù)列的通項公式,結(jié)合雙曲線漸近線方程和離心率公式進行證明即可.【小問1詳解】設(shè)等比數(shù)列的公比為,因為,所以,因此,所以,所以;【小問2詳解】由(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年貨場階段性借用合同
- 2025年度智能化磚廠設(shè)備承包合同書4篇
- 2024預(yù)制場地租賃與綠色建筑評價服務(wù)合同3篇
- 2024食堂人員培訓計劃與聘用合同規(guī)范3篇
- 2025年度時尚飾品代理招商合同協(xié)議4篇
- 2024版樓頂場地出租合同
- 2025年度戶外活動場地草籽草坪鋪設(shè)合同范本3篇
- 2025年度智能辦公場地租賃及物聯(lián)網(wǎng)技術(shù)應(yīng)用合同4篇
- 2024食品行業(yè)智能物流合同
- 2025年度住宅小區(qū)樓頂太陽能設(shè)備安裝合同4篇
- 局部放電測試儀校準規(guī)范 第1部分:超聲波法局部放電測試儀
- 旅游文本翻譯策略之轉(zhuǎn)換法-正反譯
- 工作頁(計算機組裝與維護-家用電腦組裝)
- 租賃車輛退車協(xié)議
- 醫(yī)療護理技術(shù)操作規(guī)程規(guī)定
- 分裂癥的非藥物治療
- 盤式制動器中英文對照外文翻譯文獻
- 留置導(dǎo)尿管常見并發(fā)癥預(yù)防及處理
- 社會系統(tǒng)研究方法的重要原則
- 重癥醫(yī)學科健康宣教手冊
- 四年級少先隊活動課教案(完整版)
評論
0/150
提交評論