吉林省梅河口五中等聯(lián)誼校2023年數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
吉林省梅河口五中等聯(lián)誼校2023年數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
吉林省梅河口五中等聯(lián)誼校2023年數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
吉林省梅河口五中等聯(lián)誼校2023年數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
吉林省梅河口五中等聯(lián)誼校2023年數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

吉林省梅河口五中等聯(lián)誼校2023年數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在等比數(shù)列中,,公比,則()A. B.6C. D.22.等比數(shù)列的公比為,則“”是“對于任意正整數(shù)n,都有”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件3.設(shè)拋物線上一點到軸的距離是4,則點到該拋物線焦點的距離是()A.6 B.8C.9 D.104.數(shù)列滿足,,,則數(shù)列的前10項和為()A.60 B.61C.62 D.635.已知向量,且,則的值為()A.4 B.2C.3 D.16.如圖,已知四棱錐,底面ABCD是邊長為4的菱形,且,E為AD的中點,,則異面直線PC與BE所成角的余弦值為()A. B.C. D.7.已知,,,,則()A. B.C. D.8.在等差數(shù)列{}中,,,則的值為()A.18 B.20C.22 D.249.焦點坐標為的拋物線的標準方程是()A. B.C. D.10.曲線與曲線的A.長軸長相等 B.短軸長相等C.離心率相等 D.焦距相等11.2021年是中國共產(chǎn)黨百年華誕,3月24日,中宣部發(fā)布中國共產(chǎn)黨成立100周年慶祝活動標識(如圖1).其中“100”的兩個“0”設(shè)計為兩個半徑為R的相交大圓,分別內(nèi)含一個半徑為r的同心小圓,且同心小圓均與另一個大圓外切(如圖2).已知,則由其中一個圓心向另一個小圓引的切線長與兩大圓的公共弦長之比為()A. B.3C. D.12.直線在y軸上的截距為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知等比數(shù)列滿足:,,,則公比______.14.已知數(shù)列中,.若為等差數(shù)列,則______.15.已知正方體的棱長為2,E、F分別是棱、的中點,點P為底面ABCD內(nèi)(包括邊界)的一動點,若直線與平面BEF無公共點,則點P的軌跡長度為______.16.命題“,”為假命題,則實數(shù)a的取值范圍是______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)寫出下列命題的否定,并判斷它們的真假:(1):任意兩個等邊三角形都是相似的;(2):,.18.(12分)如圖,直角梯形與等腰直角三角形所在的平面互相垂直,,,.(1)求點C到平面的距離;(2)線段上是否存在點F,使與平面所成角正弦值為,若存在,求出,若不存在,說明理由.19.(12分)如圖,在三棱錐中,側(cè)面為等邊三角形,,,平面平面,為的中點.(1)求證:;(2)若,求二面角的大小.20.(12分)設(shè)數(shù)列是公比為q的等比數(shù)列,其前n項和為(1)若,,求數(shù)列的前n項和;(2)若,,成等差數(shù)列,求q的值并證明:存在互不相同的正整數(shù)m,n,p,使得,,成等差數(shù)列;(3)若存在正整數(shù),使得數(shù)列,,…,在刪去以后按原來的順序所得到的數(shù)列是等差數(shù)列,求所有數(shù)對所構(gòu)成的集合,21.(12分)已知等比數(shù)列的前項和為,且.(1)求數(shù)列的通項公式;(2)令,求數(shù)列的前項和.22.(10分)如圖,在三棱柱中,側(cè)棱垂直于底面,分別是的中點(1)求證:平面平面;(2)求證:平面;(3)求三棱錐體積

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】利用等比數(shù)列的通項公式求解【詳解】由等比數(shù)列的通項公式得:.故選:D2、D【解析】結(jié)合等比數(shù)列的單調(diào)性,根據(jù)充分必要條件的定義判斷【詳解】若,,則,,充分性不成立;反過來,若,,則時,必要性不成立;因此“”是“對于任意正整數(shù)n,都有”的既不充分也不必要條件.故選:D3、A【解析】計算拋物線的準線,根據(jù)距離結(jié)合拋物線的定義得到答案.【詳解】拋物線的焦點為,準線方程為,到軸的距離是4,故到準線的距離是,故點到該拋物線焦點的距離是.故選:A.4、B【解析】討論奇偶性,應(yīng)用等差、等比前n項和公式對作分組求和即可.【詳解】當且為奇數(shù)時,,則,當且為偶數(shù)時,,則,∴.故選:B.5、A【解析】由題意可得,利用空間向量數(shù)量積的坐標表示列方程,解方程即可求解.【詳解】因為,所以,因為向量,,所以,解得,所以的值為,故選:A.6、B【解析】根據(jù)異面直線的定義找出角即為所求,再利用余弦定理解三角形即可得出.【詳解】分別取BC,PB的中點F,G,連接DF,F(xiàn)G,DG,如圖,因為E為AD的中點,四邊形ABCD是菱形,所以,所以(其補角)是異面直線PC與BE所成的角因為底面ABCD是邊長為4菱形,且,,由余弦定理可知,所以,所以,所以異面直線PC與BE所成角的余弦值為,故選:B7、D【解析】根據(jù)對數(shù)函數(shù)的性質(zhì)和冪函數(shù)的單調(diào)性可得正確的選項.【詳解】因為,故,故,又,在上的增函數(shù),故,故,故選:D.8、B【解析】根據(jù)等差數(shù)列通項公式相關(guān)計算求出公差,進而求出首項.【詳解】設(shè)公差為,由題意得:,解得:,所以.故選:B9、D【解析】依次確定選項中各個拋物線的焦點坐標即可.【詳解】對于A,的焦點坐標為,A錯誤;對于B,的焦點坐標為,B錯誤;對于C,焦點坐標為,C錯誤;對于D,的焦點坐標為,D正確.故選:D.10、D【解析】分別求出兩橢圓的長軸長、短軸長、離心率、焦距,即可判斷【詳解】解:曲線表示焦點在軸上,長軸長10,短軸長為6,離心率為,焦距為8曲線表示焦點在軸上,長軸長為,短軸長為,離心率為,焦距為8對照選項,則正確故選:【點睛】本題考查橢圓的方程和性質(zhì),考查運算能力,屬于基礎(chǔ)題11、C【解析】作出圖形,進而根據(jù)勾股定理并結(jié)合圓與圓的位置關(guān)系即可求得答案.【詳解】如示意圖,由題意,,則,又,,所以,所以.故選:C.12、D【解析】將代入直線方程求y值即可.【詳解】令,則,得.所以直線在y軸上的截距為.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)等比數(shù)列的通項公式可得,結(jié)合即可求出公比.【詳解】設(shè)等比數(shù)列的公式為q,則,即,解得,又,所以,所以.故答案為:.14、【解析】利用等差中項求解即可【詳解】由為等差數(shù)列,則,解得故答案為:15、【解析】取BC中點G,證明平面平面確定點P的軌跡,再計算作答.【詳解】在正方體中,取BC中點G,連接,如圖,因E、F分別是棱、的中點,則,而平面,平面,則有平面,因,則,而,則有四邊形為平行四邊形,有,又平面,平面,于是得平面,而,平面,因此,平面平面,即線段AG是點P在底面ABCD內(nèi)的軌跡,,所以點P的軌跡長度為.故答案為:16、【解析】寫出原命題的否定,再利用二次型不等式恒成立求解作答.【詳解】因命題“,”為假命題,則命題“,”為真命題,當時,恒成立,則,當時,必有,解得,所以實數(shù)a的取值范圍是.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)存在兩個等邊三角形不是相似的,假命題(2),真命題【解析】根據(jù)全稱命題與存在性命題的關(guān)系,準確改寫,即可求解.【小問1詳解】解:命題“任意兩個等邊三角形都是相似的”是一個全稱命題根據(jù)全稱命題與存在性命題的關(guān)系,可得其否定“存在兩個等邊三角形不是相似的”,命題為假命題.【小問2詳解】解:根據(jù)全稱命題與存在性命題關(guān)系,可得:命題的否定為.因為,所以命題為真命題.18、(1)(2)存在,1【解析】(1)由題意建立空間直角坐標系,求得平面向量的法向量和相應(yīng)點的坐標,利用點面距離公式即可求得點面距離(2)假設(shè)滿足題意的點存在且滿足,由題意得到關(guān)于的方程,解方程即可確定滿足題意的點是否存在【小問1詳解】解:如圖所示,取中點,連結(jié),,因為三角形是等腰直角三角形,所以,因為面面,面面面,所以平面,又因為,所以四邊形是矩形,可得,則,建立如圖所示的空間直角坐標系,則:據(jù)此可得,設(shè)平面的一個法向量為,則,令可得,從而,又,故求點到平面的距離【小問2詳解】解:假設(shè)存在點,,滿足題意,點在線段上,則,即:,,,,,據(jù)此可得:,,從而,,,,設(shè)與平面所成角所成的角為,則,整理可得:,解得:或(舍去)據(jù)此可知,存在滿足題意的點,點為的中點,即19、(1)證明見解析(2)【解析】(1)取中點,由面面垂直和線面垂直性質(zhì)可證得,結(jié)合,由線面垂直判定可證得平面,由線面垂直性質(zhì)可得結(jié)論;(2)以為坐標原點可建立空間直角坐標系,由向量數(shù)乘運算可求得點坐標,利用二面角的向量求法可求得結(jié)果.【小問1詳解】取中點,連接,為等邊三角形,為中點,,平面平面,平面平面,平面,平面,又平面,;分別為中點,,又,,平面,,平面,又平面,.【小問2詳解】以為坐標原點,為軸可建立如圖所示空間直角坐標系,則,,,,,設(shè),則,,由得:,解得:,即,,設(shè)平面的法向量,則,令,解得:,,;又平面的一個法向量,;由圖象知:二面角為銳二面角,二面角的大小為.20、(1)(2),證明見解析.(3)不存在,【解析】(1)數(shù)列為首項為公差為的等差數(shù)列,利用等差數(shù)列的求和公式即可得出結(jié)果;(2),,成等差數(shù)列,則+=2,根據(jù)等比數(shù)列求和公式計算可解得,進而計算可得,即可判斷結(jié)果;(3)由題意列出,,…,,,,,,…,在刪去以后,按原來的順序所得到的數(shù)列是等差數(shù)列,則,解方程組可得無解,則所有數(shù)對所構(gòu)成的集合為.【小問1詳解】,,數(shù)列是公比為q的等比數(shù)列,,數(shù)列為,數(shù)列為首項為公差為的等差數(shù)列,數(shù)列的前n項和.【小問2詳解】,,成等差數(shù)列,+=2,當時,+=,2,不符題意舍去,當時,.,即,,,(舍)或即,存在互不相同的正整數(shù),使得,,成等差數(shù)列,,,.【小問3詳解】由題意列出,,…,,,,,,…,在刪去以后,按原來的順序所得到的數(shù)列是等差數(shù)列,則,,即,解得:方程組無解.即符合條件的不存在,所有數(shù)對所構(gòu)成的集合為.21、(1)(2)【解析】(1)根據(jù)得到,再結(jié)合為等比數(shù)列求出首項,進而求得數(shù)列的通項公式;(2)由(1)求得數(shù)列的通項公式,進而利用公式法即可求出【小問1詳解】解:(1),,當時,,即,又,為等比數(shù)列,所以,,數(shù)列的通項公式為【小問2詳解】(2)由(1)知,則,數(shù)列的前項和22、(1)證明見解析;(2)證明見解析;(3)【解析】(1)由直線與平面垂直證明直線與平行的垂直;(2)證明直線與平面平行;(3)求三棱錐的體積就用體積公式.(1)在三棱柱中,底面ABC,所以AB,又因為AB⊥BC,所以AB⊥平面,因為AB平面,所以平面平面.(2)取AB中點G,連結(jié)EG,F(xiàn)G

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論