版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江西省吉安市重點高中2023-2024學年高二上數(shù)學期末監(jiān)測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知遞增等比數(shù)列的前n項和為,,且,則與的關(guān)系是()A. B.C. D.2.已知命題p:?x>2,x2>2x,命題q:?x0∈R,ln(x02+1)<0,則下列命題是真命題的是()A.p∧ B.p∨C.p∧q D.p∨q3.的展開式中的系數(shù)是()A. B.C. D.4.命題“,”的否定是()A., B.,C, D.,5.觀察,,,由歸納推理可得:若定義在上的函數(shù)滿足,記為的導函數(shù),則=A. B.C. D.6.如圖,某綠色蔬菜種植基地在A處,要把此處生產(chǎn)的蔬菜沿道路或運送到形狀為四邊形區(qū)域的農(nóng)貿(mào)市場中去,現(xiàn)要求在農(nóng)貿(mào)市場中確定一條界線,使位于界線一側(cè)的點沿道路運送蔬菜較近,而另一側(cè)的點沿道路運送蔬菜較近,則該界線所在曲線為()A.圓 B.橢圓C.雙曲線 D.拋物線7.已知函數(shù)滿足對于恒成立,設則下列不等關(guān)系正確是()A. B.C. D.8.已知,是雙曲線C:(,)的兩個焦點,過點與x軸垂直的直線與雙曲線C交于A、B兩點,若是等腰直角三角形,則雙曲線C的離心率為()A. B.C. D.9.已知雙曲線的離心率為,則雙曲線C的漸近線方程為()A. B.C. D.10.若不等式組表示的區(qū)域為,不等式表示的區(qū)域為,向區(qū)域均勻隨機撒顆芝麻,則落在區(qū)域中的芝麻數(shù)約為()A. B.C. D.11.已知拋物線:,焦點為,若過的直線交拋物線于、兩點,、到拋物線準線的距離分別為3、7,則長為A.3 B.4C.7 D.1012.已知數(shù)列為等比數(shù)列,則“,”是“為遞減數(shù)列”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.在空間直角坐標系中,點關(guān)于原點的對稱點為點,則___________.14.已知直線與,若,則實數(shù)a的值為______15.已知,是雙曲線的兩個焦點,以線段為邊作正,若邊的中點在雙曲線上,則雙曲線的離心率____________.16.過點作圓的切線,則切線方程為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列滿足,記數(shù)列的前項和為,且,(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前100項和18.(12分)已知兩條直線,.設為實數(shù),分別根據(jù)下列條件求的值.(1);(2)直線在軸、軸上截距之和等于.19.(12分)已知函數(shù)(1)求單調(diào)增區(qū)間;(2)當時,恒成立,求實數(shù)的取值范圍.20.(12分)已知函數(shù).(1)求函數(shù)的極值;(2)若對恒成立,求實數(shù)a的取值范圍.21.(12分)圓經(jīng)過兩點,且圓心在直線上.(1)求圓的方程;(2)求圓與圓的公共弦的長.22.(10分)設,分別是橢圓()的左、右焦點,E的離心率為.短軸長為2.(1)求橢圓E的方程:(2)過點的直線l交橢圓E于A,B兩點,是否存在實數(shù)t,使得恒成立?若存在,求出t的值;若不存在,說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】設等比數(shù)列的公比為,由已知列式求得,再由等比數(shù)列的通項公式與前項和求解.【詳解】設等比數(shù)列的公比為,由,得,所以,又,所以,所以,,所以即故選:D2、B【解析】取x=4,得出命題p是假命題,由對數(shù)的運算得出命題q是假命題,再判斷選項.【詳解】命題p:?x>2,x2>2x,是假命題,例如取x=4,則42=24;命題q:?x0∈R,ln(x02+1)<0,是假命題,∵?x∈R,ln(x2+1)≥0.則下列命題是真命題的是.故選:B.3、B【解析】根據(jù)二項式定理求出答案即可.【詳解】的展開式中的系數(shù)是故選:B4、D【解析】由含量詞命題否定的定義,寫出命題的否定即可【詳解】命題“,”的否定是:,,故選:D.5、D【解析】由歸納推理可知偶函數(shù)的導數(shù)是奇函數(shù),因為是偶函數(shù),則是奇函數(shù),所以,應選答案D6、C【解析】設是界限上的一點,則,即,再根據(jù)雙曲線的定義即可得出答案.【詳解】解:設是界限上的一點,則,所以,即,在中,,所以點的軌跡為雙曲線,即該界線所在曲線為雙曲線.故選:C.7、A【解析】由條件可得函數(shù)為上的增函數(shù),構(gòu)造函數(shù),利用函數(shù)單調(diào)性比較的大小,再根據(jù)函數(shù)的單調(diào)性確定各選項的對錯.【詳解】設,則,∵,∴,∴函數(shù)在上為增函數(shù),∵,∴,故,所以,C錯,令(),則,當時,,當時,∴函數(shù)在區(qū)間上為增函數(shù),在區(qū)間上為減函數(shù),又,∴,∴,即,∴,故,所以,D錯,,故,所以,A對,,故,所以,B錯,故選:A.8、B【解析】根據(jù)等腰直角三角形的性質(zhì),結(jié)合雙曲線的離心率公式進行求解即可.【詳解】由題意不妨設,,當時,由,不妨設,因為是等腰直角三角形,所以有,或舍去,故選:B9、B【解析】根據(jù)a的值和離心率可求得b,從而求得漸近線方程.【詳解】由雙曲線的離心率為,知,則,即有,故,所以雙曲線C的漸近線方程為,即,故選:B.10、A【解析】作出兩平面區(qū)域,計算兩區(qū)域的公共面積,利用幾何概型得出芝麻落在區(qū)域Γ內(nèi)的概率,進而可得答案.【詳解】作出不等式組所表示的平面區(qū)域如下圖中三角形ABC及其內(nèi)部,不等式表示的區(qū)域如下圖中的圓及其內(nèi)部:由圖可得,A點坐標為點坐標為坐標為點坐標為.區(qū)域即的面積為,區(qū)域的面積為圓的面積,即,其中區(qū)域和區(qū)域不相交的部分面積即空白面積,所以區(qū)域和區(qū)域相交的部分面積,所以落入?yún)^(qū)域的概率為.所以均勻隨機撒顆芝麻,則落在區(qū)域中芝麻數(shù)約為.故選:A.11、D【解析】利用拋物線的定義,把的長轉(zhuǎn)化為點到準線的距離的和得解【詳解】解:拋物線:,焦點為,過的直線交拋物線于、兩點,、到拋物線準線的距離分別為3、7,則故選D【點睛】本題考查拋物線定義的應用,意在考查學生對該知識的理解掌握水平和分析推理能力.12、A【解析】本題可依次判斷“,”是否是“為遞減數(shù)列”的充分條件以及必要條件,即可得出結(jié)果.【詳解】若等比數(shù)列滿足、,則數(shù)列為遞減數(shù)列,故“,”是“為遞減數(shù)列”的充分條件,因為若等比數(shù)列滿足、,則數(shù)列也是遞減數(shù)列,所以“,”不是“為遞減數(shù)列”的必要條件,綜上所述,“,”是“為遞減數(shù)列”的充分不必要條件,故選:A.【點睛】本題考查充分條件以及必要條件的判定,考查等比數(shù)列以及遞減數(shù)列的相關(guān)性質(zhì),體現(xiàn)了基礎(chǔ)性和綜合性,考查推理能力,是簡單題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先利用關(guān)于原點對稱的點的坐標特征求出點,再利用空間兩點間的距離公式即可求.【詳解】因為B與關(guān)于原點對稱,故,所以.故答案為:.14、【解析】由可得,從而可求出實數(shù)a的值【詳解】因為直線與,且,所以,解得,故答案:15、##【解析】根據(jù)線段為邊作正,得到M在y軸上,求得M的坐標,再由,得到邊的中點坐標,代入雙曲線方程求解.【詳解】以線段為邊作正,則M在y軸上,設,則,因為,所以邊的中點坐標為,因為邊的中點在雙曲線上,所以,因為,所以,即,解得,因為,所以,故答案為:16、【解析】求出切點與圓心連線的斜率后可得切線方程.【詳解】因為點在圓上,故切線必垂直于切點與圓心連線,而切點與圓心連線的斜率為,故切線的斜率為,故切線方程為:即.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由題意得出,然后與原式結(jié)合,兩式相減并化簡求出,最后根據(jù)等差數(shù)列的定義求得答案;(2)結(jié)合(1),分別討論,和三種情況,分別求出,進而求出.【小問1詳解】因為,所以,兩式相減得,所以又,所以數(shù)列是首項為,公差為2的等差數(shù)列,所以.【小問2詳解】由得,當時,,當時,,當時,,所以.18、(1);(2).【解析】(1)由兩直線平行可得出關(guān)于的等式,求出的值,再代入兩直線方程,驗證兩直線是否平行,由此可得出結(jié)果;(2)分析可知,求出直線在軸、軸上的截距,結(jié)合已知條件可得出關(guān)于的等式,即可解得的值.【小問1詳解】解:由,則,即,解得或.當時,,,此時;當時,,,此時重合,不合乎題意.綜上所述,;【小問2詳解】解:對于直線,由已知可得,則,令,得;令,得.因為直線在軸、軸上截距之和等于,即,解得.19、(1)單調(diào)增區(qū)間為;(2).【解析】(1)求導由求解.(2)將時,恒成立,轉(zhuǎn)化為時,恒成立,令用導數(shù)法由求解即可.【詳解】(1)因為函數(shù)所以令,解得,所以單調(diào)增區(qū)間為.(2)因為時,恒成立,所以時,恒成立,令則令因為時,恒成立,所以在單調(diào)遞減.當時,在單調(diào)遞減,故符合要求;當時,單調(diào)遞減,故存在使得則當時單調(diào)遞增,不符合要求;當時,單調(diào)遞減,故存在使得則當時單調(diào)遞增,不符合要求.綜上.【點睛】方法點睛:恒(能)成立問題的解法:若在區(qū)間D上有最值,則(1)恒成立:;;(2)能成立:;.若能分離常數(shù),即將問題轉(zhuǎn)化為:(或),則(1)恒成立:;;(2)能成立:;;20、(1)極大值為,無極小值(2)【解析】(1)求函數(shù)的導數(shù),根據(jù)導數(shù)的正負判斷極值點,代入原函數(shù)計算即可;(2)將變形,即對恒成立,然后構(gòu)造函數(shù),利用求導判定函數(shù)的單調(diào)性,進而確定實數(shù)a的取值范圍..【小問1詳解】對函數(shù)求導可得:,可知當時,時,,即可知在上單調(diào)遞增,在上單調(diào)遞減由上可知,的極大值為,無極小值【小問2詳解】由對恒成立,當時,恒成立;當時,對恒成立,可變形為:對恒成立,令,則;求導可得:由(1)知即恒成立,當時,,則在上單調(diào)遞增;又,因,故,,所以在上恒成立,當時,令,得,當時,在上單調(diào)遞增,當時,在上單調(diào)遞減,從而可知的最大值為,即,因此,對都有恒成立,所以,實數(shù)a的取值范圍是.21、(1)(2)【解析】(1)設圓的方程為,代入所過的點后可求,從而可求圓的方程.(2)利用兩圓的方程可求公共弦的方程,利用垂徑定理可求公共弦的弦長.【小問1詳解】設圓的方程為,,,所以圓的方程為;【小問2詳解】由圓的方程和圓的方程可得公共弦的方程為:,整理得到:,到公共弦距離為,故公共弦的弦長為:.22、(1)(2)存在,【解析】(1)由條件列出,,的方程,解方程求出,,,由此可得橢圓E的方程:(2)當直線的斜率存在時,設直線的方程為,聯(lián)立直線的方程與橢圓方程化簡可得,設,,可得,,由此證明,再證明當直線的斜率不存在時也成立,由此確定存在實數(shù)t,使
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版南京綠色建筑項目能源合同管理協(xié)議4篇
- 2025年度特色苗木種植與市場推廣服務合同4篇
- 2025年度鋁合金門窗企業(yè)戰(zhàn)略合作伙伴合同范本
- 2025年度時尚服飾區(qū)域分銷代理合同
- 2025年度高校教授職務評審及聘任合同4篇
- 二零二五年度土石方工程地質(zhì)災害預警與應急處理合同
- 二零二五年度冷鏈倉儲與運輸一體化服務合同4篇
- 二零二五年度棉花產(chǎn)業(yè)安全生產(chǎn)管理合同4篇
- 2025版美發(fā)師創(chuàng)業(yè)孵化項目聘用合同2篇
- 二零二五年度奢侈品銷售團隊聘用合同范本
- 第1課 隋朝統(tǒng)一與滅亡 課件(26張)2024-2025學年部編版七年級歷史下冊
- 2025-2030年中國糖醇市場運行狀況及投資前景趨勢分析報告
- 冬日暖陽健康守護
- 水處理藥劑采購項目技術(shù)方案(技術(shù)方案)
- 2024級高一上期期中測試數(shù)學試題含答案
- 盾構(gòu)標準化施工手冊
- 天然氣脫硫完整版本
- 山東省2024-2025學年高三上學期新高考聯(lián)合質(zhì)量測評10月聯(lián)考英語試題
- 不間斷電源UPS知識培訓
- 三年級除法豎式300道題及答案
- 人教版八級物理下冊知識點結(jié)
評論
0/150
提交評論