版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江西省南昌十中2023-2024學年數學高二上期末質量檢測模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數在的圖象大致為()A. B.C D.2.直線的傾斜角為()A.1 B.-1C. D.3.已知是拋物線上的一點,是拋物線的焦點,若以為始邊,為終邊的角,則等于()A. B.C. D.4.入冬以來,梁老師準備了4個不同的烤火爐,全部分發(fā)給樓的三個辦公室(每層樓各有一個辦公室).1,2樓的老師反映辦公室有點冷,所以1,2樓的每個辦公室至少需要1個烤火隊,3樓老師表示不要也可以.則梁老師共有多少種分發(fā)烤火爐的方法()A.108 B.36C.50 D.865.數列滿足,且,是函數的極值點,則的值是()A.2 B.3C.4 D.56.已知隨機變量,且,,則為()A.0.1358 B.0.2716C.0.1359 D.0.27187.如圖,執(zhí)行該程序框圖,則輸出的的值為()A. B.2C. D.38.集合,,則()A. B.C. D.9.已知數列滿足,,記數列的前n項和為,若對于任意,不等式恒成立,則實數k的取值范圍為()A. B.C. D.10.中國古代數學名著《算法統(tǒng)宗》中有這樣一個問題:“今有俸糧三百零五石,令五等官(正一品、從一品、正二品、從二品、正三品)依品遞差十三石分之,問,各若干?”其大意是,現有俸糧石,分給正一品、從一品、正二品、從二品、正三品這位官員,依照品級遞減石分這些俸糧,問,每個人各分得多少俸糧?在這個問題中,正三品分得俸糧是()A.石 B.石C.石 D.石11.我國古代數學名著《算法統(tǒng)宗》是明代數學家程大位(1533-1606年)所著.該書中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”.其意思是:“一座7層塔共掛了381盞燈,且下一層燈數是上一層的2倍,則可得塔的最頂層共有燈幾盞?”.若改為“求塔的最底層幾盞燈?”,則最底層有()盞.A.192 B.128C.3 D.112.下列三個命題:①“若,則a,b全為0”的逆否命題是“若a,b全不為0,則”;②若事件A與事件B互斥,則;③設命題p:若m是質數,則m一定是奇數,那么是真命題;其中真命題的個數為()A.3 B.2C.1 D.0二、填空題:本題共4小題,每小題5分,共20分。13.希臘著名數學家阿波羅尼斯與歐幾里得、阿基米德齊名.他發(fā)現:“平面內到兩個定點A,B的距離之比為定值λ(λ≠1)的點的軌跡是圓”.后來,人們將這個圓以他的名字命名,稱為阿波羅尼斯圓,簡稱阿氏圓.已知在平面直角坐標系xOy中,A(-2,1),B(-2,4),點P是滿足的阿氏圓上的任一點,則該阿氏圓的方程為___________________;若點Q為拋物線E:y2=4x上的動點,Q在直線x=-1上的射影為H,則的最小值為___________.14.已知橢圓的左、右焦點分別為、,關于原點對稱的點A、B在橢圓上,且滿足,若令且,則該橢圓離心率的取值范圍為___________15.如圖,棱長為2的正方體中,E,F分別為棱、的中點,G為面對角線上一個動點,則三棱錐的外接球表面積的最小值為___________.16.在區(qū)間上隨機取1個數,則取到的數小于2的概率為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在幾何體ABCEFG中,四邊形ACGE為平行四邊形,為等邊三角形,四邊形BCGF為梯形,H為線段BF的中點,,,,,,.(1)求證:平面平面BCGF;(2)求平面ABC與平面ACH夾角的余弦值.18.(12分)已知函數在處有極值.(1)求常數a,b的值;(2)求函數在上的最值.19.(12分)已知橢圓C:的離心率為,,是橢圓的左、右焦點,過且垂直于x軸的直線被橢圓C截得的線段長為1(1)求橢圓C的方程;(2)過點的直線l與橢圓C交于A,B兩點,求(O為坐標原點)的面積的最大值20.(12分)在正方體中,E,F分別是,的中點(1)求證:∥平面;(2)求平面與平面EDC所成的二面角的正弦值21.(12分)已知等比數列{}的各項均為正數,,,成等差數列,,數列{}的前n項和,且.(1)求{}和{}的通項公式;(2)設,記數列{}的前n項和為.求證:.22.(10分)已知函數()(1)討論函數的單調區(qū)間;(2)若有兩個極值點,(),且不等式恒成立,求實數m的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】函數|在[–2,2]上是偶函數,其圖象關于軸對稱,因為,所以排除選項;當時,有一零點,設為,當時,為減函數,當時,為增函數故選:D.2、C【解析】根據直線斜率的定義即可求解.【詳解】,斜率為1,則傾斜角為.故選:C.3、D【解析】設點,取,可得,求出的值,利用拋物線的定義可求得的值.【詳解】設點,其中,則,,取,則,可得,因為,可得,解得,則,因此,.故選:D.4、C【解析】運用分類計數原理,結合組合數定義進行求解即可.【詳解】當3樓不要烤火爐時,不同的分發(fā)烤火爐的方法為:;當3樓需要1個烤火爐時,不同的分發(fā)烤火爐的方法為:;當3樓需要2個烤火爐時,不同的分發(fā)烤火爐的方法為:,所以分發(fā)烤火爐的方法總數為:,故選:C【點睛】關鍵點睛:運用分類計數原理是解題的關鍵.5、C【解析】利用導數即可求出函數的極值點,再利用等差數列的性質及其對數的運算性質求解即可【詳解】由,得,因為,是函數的極值點,所以,是方程兩個實根,所以,因為數列滿足,所以,所以數列為等差數列,所以,所以,故選:C6、C【解析】根據正態(tài)分布的對稱性可求概率.【詳解】由題設可得,,故選:C.7、B【解析】根據程序流程圖依次算出的值即可.【詳解】,第一次執(zhí)行,,第二次執(zhí)行,,第三次執(zhí)行,,所以輸出.故選:B8、A【解析】先解不等式求得集合再求交集.【詳解】解不等式得:,則有,解不等式,解得或,則有或,所以為.故選:A.9、C【解析】由已知得,根據等比數列的定義得數列是首項為,公比為的等比數列,由此求得,然后利用裂項求和法求得,進而求得的取值范圍.【詳解】解:依題意,當時,,則,所以數列是首項為,公比為的等比數列,,即,所以,所以,所以的取值范圍是.故選:C.10、D【解析】令位官員(正一品、從一品、正二品、從二品、正三品)所分得的俸糧數是公差為數列,利用等差數列的前n項和求,進而求出正三品即可.【詳解】正一品、從一品、正二品、從二品、正三品這位官員所分得的俸糧數記為數列,由題意,是以為公差的等差數列,且,解得.故正三品分得俸糧數量為(石).故選:D.11、A【解析】根據題意,轉化為等比數列,利用通項公式和求和公式進行求解.【詳解】設這個塔頂層有盞燈,則問題等價于一個首項為,公比為2的等比數列的前7項和為381,所以,解得,所以這個塔的最底層有盞燈.故選:A.12、B【解析】寫出逆否命題可判斷①;根據互斥事件的概率定義可判斷②;根據寫出再判斷真假可判斷③.【詳解】對于①,“,則a,b全為0”的逆否命題是“若a,b不全為0,則”,故①錯誤;對于②,滿足互斥事件的概率求和的方法,所以②為真命題;③命題p:若m是質數,則m一定是奇數.2是質數,但2是偶數,命題p是假命題,那么真命題故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】(1)利用直譯法直接求出P點的軌跡(2)先利用阿氏圓的定義將轉化為P點到另一個定點的距離,然后結合拋物線的定義容易求得的最小值【詳解】設P(x,y),由阿氏圓的定義可得即化簡得則設則由拋物線的定義可得當且僅當四點共線時取等號,的最小值為故答案為:【點睛】本題考查了拋物線的定義及幾何性質,同時考查了阿氏圓定義的應用.還考查了學生利用轉化思想、方程思想等思想方法解題的能力.難度較大14、【解析】由得為矩形,則,故,結合正弦函數即可求得范圍【詳解】由已知可得,且四邊形為矩形所以,又因為,所以得離心率因為,所以,可得,從而故答案為:15、【解析】以DA,DC,分別為x軸,y軸,z軸建系,則,設,球心,得到外接球半徑關于的函數關系,求出的最小值,即可得到答案;【詳解】解:以DA,DC,分別為x軸,y軸,z軸建系.則,設,球心,,又.聯立以上兩式,得,所以時,,為最小值,外接球表面積最小值為.故答案為:.16、【解析】根據幾何概型計算公式進行求解即可.【詳解】設“區(qū)間上隨機取1個數”,對應集合為,區(qū)間長度為3,“取到的數小于2”,對應集合為,區(qū)間長度為1,所以.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)在中,由正弦定理知可知,利用三角形內角和可知即,又因為,再根據面面垂直的判定定理,即可證明結果;(2)取BC中點O,由(1)得:平面BCGF,,以O為原點,OB,OH,OA所在直線分別為x軸、y軸、z軸,建立空間直角坐標系,利用空間向量求二面角,即可求出結果.【小問1詳解】證明:(1)在中,由正弦定理知:解得因為,所以又因為,所以所以又因為,所以直線平面ABC又因為平面BCGF所以平面平面BCGF【小問2詳解】解:取BC中點O,連結OA,OH,由(1)得:平面BCGF,則以O為原點,OB,OH,OA所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標系在中,則,,平面ABC的一個法向量為設平面ACH的一個法向量為因為,所以,取,則設平面APD與平面PDF夾角為,所以.18、(1);(2)最大值為-1,最值為-5.【解析】(1)根據給定條件結合函數的導數建立方程,求解方程并驗證作答.(2)利用導數探討函數在上的單調性即可計算作答.【小問1詳解】依題意:,則,解得:,當時,,當時,,當時,,則函數在處有極值,所以.【小問2詳解】由(1)知:,,,當時,,當時,,因此,在上單調遞增,在上單調遞減,于是得,而,,則,所以函數在上的最大值為-1,最值為-5.19、(1);(2)1.【解析】(1)根據給定條件結合列式計算得解.(2)設出直線l的方程,與橢圓C的方程聯立,借助韋達定理結合均值不等式計算作答.【小問1詳解】橢圓C的半焦距為c,離心率,因過且垂直于x軸的直線被橢圓C截得的弦長為1,將代入橢圓C方程得:,即,則有,解得,所以橢圓C的方程為.【小問2詳解】由(1)知,,依題意,直線l的斜率不為0,則設直線l的方程為,,,由消去x并整理得:,,,的面積,,設,,,,當且僅當,時取得“=”,于是得,,所以面積的最大值為1.【點睛】思路點睛:解決直線與橢圓的綜合問題時,要注意:(1)注意觀察應用題設中的每一個條件,明確確定直線、橢圓的條件;(2)強化有關直線與橢圓聯立得出一元二次方程后的運算能力,重視根與系數之間的關系、弦長、斜率、三角形的面積等問題20、(1)見解析;(2).【解析】(1)連接,,連接,證明CE∥即可;(2)建立空間直角坐標系,求出平面與平面EDC的法向量,利用向量法求二面角的正弦值.【小問1詳解】如圖,連接,,連接,∵BC∥且BC=,∴四邊形是平行四邊形,∴∥且,∵E是中點,G是中點,∴∥CG且,∴四邊形是平行四邊形,∴∥CE,∵平面,CE平面,∴CE∥平面;【小問2詳解】如圖建立空間直角坐標系,設正方體的棱長為2,則,則,設平面的法向量為,則,?。辉O平面EDC的法向量為,則,取,則;設平面與平面EDC所成的二面角的平面角為α,則,∴21、(1)(2)證明見解析【解析】設等比數列的公比為,由,,成等差數列,解得.由,利用通項公式解得,可得.由數列的前項和,且,時,,化簡整理即可得出;(2),利用裂項求和方法、數列的單調性即可證明結論【小問1詳解】設等比數列的公比為,,,成等差數列,,即,化為:,解得,,即,解得,數列的前項和,且,時,,化為:,,數列是每項都為1的常數列,,化為【小問2詳解】證明:,數列的前項和為,22、(1)時,在遞增,時,在遞減,在遞增(2)【解析】(1)求出函數導數,分和兩種情況討論可得單調性;(2)根據
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024新教材高中歷史 第六單元 世界殖民體系與亞非拉民族獨立運動 第12課 資本主義世界殖民體系的形成教學實錄 部編版必修中外歷史綱要下
- 安全生產檢查記錄表(范本)
- 關于旅游類實習報告模板八篇
- 2025屆高三英語一輪復習外刊語法填空-澳門回歸25周年+電影《小小的我》上映+哈爾濱冰雪大世界開園
- 關于人力資源的實習報告
- 2024年海鮮供應商獨家合作協議
- 關于個人民警述職報告3篇
- 自我鑒定大學生500字
- 學生軍訓心得體會合集15篇
- 心理學心得體會三篇
- 辦公室裝修工程施工招標文件范本模板
- 勞動教育智慧樹知到期末考試答案章節(jié)答案2024年上海杉達學院
- 義務教育語文新課程標準
- 實+用英語語音(山東聯盟)智慧樹知到期末考試答案章節(jié)答案2024年曲阜師范大學
- 上海市楊浦區(qū)2023-2024學年九年級上學期期末考試語文試題(解析版)
- 2023-2024學年安徽省安慶市宿松縣八年級(上)期末數學試卷
- 《電化學儲能電站運行維護規(guī)程》
- 學前兒童游戲指導形成性考核二
- 01中國電信云計算產品體系架構
- 飲食基因與文化智慧樹知到期末考試答案2024年
- 廣東省課程思政示范高職院校申報書
評論
0/150
提交評論