名校聯(lián)盟2023-2024學(xué)年高二上數(shù)學(xué)期末考試模擬試題含解析_第1頁
名校聯(lián)盟2023-2024學(xué)年高二上數(shù)學(xué)期末考試模擬試題含解析_第2頁
名校聯(lián)盟2023-2024學(xué)年高二上數(shù)學(xué)期末考試模擬試題含解析_第3頁
名校聯(lián)盟2023-2024學(xué)年高二上數(shù)學(xué)期末考試模擬試題含解析_第4頁
名校聯(lián)盟2023-2024學(xué)年高二上數(shù)學(xué)期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

名校聯(lián)盟2023-2024學(xué)年高二上數(shù)學(xué)期末考試模擬試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,是對(duì)某位同學(xué)一學(xué)期次體育測試成績(單位:分)進(jìn)行統(tǒng)計(jì)得到的散點(diǎn)圖,關(guān)于這位同學(xué)的成績分析,下列結(jié)論錯(cuò)誤的是()A.該同學(xué)的體育測試成績總的趨勢(shì)是在逐步提高,且次測試成績的極差超過分B.該同學(xué)次測試成績的眾數(shù)是分C.該同學(xué)次測試成績的中位數(shù)是分D.該同學(xué)次測試成績與測試次數(shù)具有相關(guān)性,且呈正相關(guān)2.若不等式組表示的區(qū)域?yàn)椋坏仁奖硎镜膮^(qū)域?yàn)?,向區(qū)域均勻隨機(jī)撒顆芝麻,則落在區(qū)域中的芝麻數(shù)約為()A. B.C. D.3.若a>0,b>0,且函數(shù)f(x)=4x3﹣ax2﹣2bx+2在x=1處有極值,則ab的最大值等于A.2 B.3C.6 D.94.已知數(shù)列滿足,,,前項(xiàng)和()A. B.C. D.5.據(jù)記載,歐拉公式是由瑞士著名數(shù)學(xué)家歐拉發(fā)現(xiàn)的,該公式被譽(yù)為“數(shù)學(xué)中的天橋”特別是當(dāng)時(shí),得到一個(gè)令人著迷的優(yōu)美恒等式,將數(shù)學(xué)中五個(gè)重要的數(shù)(自然對(duì)數(shù)的底,圓周率,虛數(shù)單位,自然數(shù)的單位和零元)聯(lián)系到了一起,有些數(shù)學(xué)家評(píng)價(jià)它是“最完美的數(shù)學(xué)公式”.根據(jù)歐拉公式,復(fù)數(shù)的虛部()A. B.C. D.6.已知等比數(shù)列的公比為q,且,則“”是“是遞增數(shù)列”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.橢圓中以點(diǎn)為中點(diǎn)的弦所在直線斜率為()A. B.C. D.8.如圖,過拋物線的焦點(diǎn)的直線與拋物線交于兩點(diǎn),與其準(zhǔn)線交于點(diǎn)(點(diǎn)位于之間)且于點(diǎn)且,則等于()A. B.C. D.9.已知橢圓的左、右焦點(diǎn)分別為,過的直線與橢圓C相交P,Q兩點(diǎn),若,且,則橢圓C的離心率為()A. B.C. D.10.函數(shù)的大致圖象為A. B.C. D.11.等比數(shù)列的各項(xiàng)均為正數(shù),已知向量,,且,則A.12 B.10C.5 D.12.閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,輸出S的結(jié)果是()A.128 B.64C.16 D.32二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的前項(xiàng)和,則該數(shù)列的首項(xiàng)__________,通項(xiàng)公式__________.14.設(shè)拋物線的準(zhǔn)線方程為__________.15.若橢圓的一個(gè)焦點(diǎn)為,則p的值為______16.直線與圓相交于A,B兩點(diǎn),則______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左頂點(diǎn)、上頂點(diǎn)和右焦點(diǎn)分別為,且的面積為,橢圓上的動(dòng)點(diǎn)到的最小距離是(1)求橢圓的方程;(2)過橢圓的左頂點(diǎn)作兩條互相垂直的直線交橢圓于不同的兩點(diǎn)(異于點(diǎn)).①證明:動(dòng)直線恒過軸上一定點(diǎn);②設(shè)線段中點(diǎn)為,坐標(biāo)原點(diǎn)為,求的面積的最大值.18.(12分)已知數(shù)列的前n項(xiàng)和,遞增等比數(shù)列滿足,且.(1)求數(shù)列,的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和為.19.(12分)某蓮藕種植塘每年的固定成本是2萬元,每年最大規(guī)模的種植量是8萬千克,每種植1萬千克蓮藕,成本增加0.5萬元.種植萬千克蓮藕的銷售額(單位:萬元)是(是常數(shù)),若種植2萬千克蓮藕,利潤是1.5萬元,求:(1)種植萬千克蓮藕利潤(單位:萬元)為的解析式;(2)要使利潤最大,每年需種植多少萬千克蓮藕,并求出利潤的最大值.20.(12分)已知?jiǎng)狱c(diǎn)在橢圓:()上,,為橢圓左、右焦點(diǎn).過點(diǎn)作軸的垂線,垂足為,點(diǎn)滿足,且點(diǎn)的軌跡是過點(diǎn)的圓(1)求橢圓方程;(2)過點(diǎn),分別作平行直線和,設(shè)交橢圓于點(diǎn),,交橢圓于點(diǎn),,求四邊形的面積的最大值21.(12分)如圖,三棱柱中,底面邊長和側(cè)棱長都等于1,(1)設(shè),,,用向量表示,并求出的長度;(2)求異面直線與所成角的余弦值22.(10分)已知數(shù)列{an}的前n項(xiàng)和為Sn,.(1)求數(shù)列{an}通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和,求使不等式成立的最大整數(shù)m的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】根據(jù)給定的散點(diǎn)圖,逐一分析各個(gè)選項(xiàng)即可判斷作答.【詳解】對(duì)于A,由散點(diǎn)圖知,8次測試成績總體是依次增大,極差為,A正確;對(duì)于B,散點(diǎn)圖中8個(gè)數(shù)據(jù)的眾數(shù)是48,B正確;對(duì)于C,散點(diǎn)圖中的8個(gè)數(shù)由小到大排列,最中間兩個(gè)數(shù)都是48,則次測試成績的中位數(shù)是分,C不正確;對(duì)于D,散點(diǎn)圖中8個(gè)點(diǎn)落在某條斜向上的直線附近,則次測試成績與測試次數(shù)具有相關(guān)性,且呈正相關(guān),D正確.故選:C2、A【解析】作出兩平面區(qū)域,計(jì)算兩區(qū)域的公共面積,利用幾何概型得出芝麻落在區(qū)域Γ內(nèi)的概率,進(jìn)而可得答案.【詳解】作出不等式組所表示的平面區(qū)域如下圖中三角形ABC及其內(nèi)部,不等式表示的區(qū)域如下圖中的圓及其內(nèi)部:由圖可得,A點(diǎn)坐標(biāo)為點(diǎn)坐標(biāo)為坐標(biāo)為點(diǎn)坐標(biāo)為.區(qū)域即的面積為,區(qū)域的面積為圓的面積,即,其中區(qū)域和區(qū)域不相交的部分面積即空白面積,所以區(qū)域和區(qū)域相交的部分面積,所以落入?yún)^(qū)域的概率為.所以均勻隨機(jī)撒顆芝麻,則落在區(qū)域中芝麻數(shù)約為.故選:A.3、D【解析】求出導(dǎo)函數(shù),利用函數(shù)在極值點(diǎn)處的導(dǎo)數(shù)值為0得到a,b滿足的條件;利用基本不等式求出ab的最值;注意利用基本不等式求最值需注意:一正、二定、三相等解:∵f′(x)=12x2﹣2ax﹣2b又因?yàn)樵趚=1處有極值∴a+b=6∵a>0,b>0∴當(dāng)且僅當(dāng)a=b=3時(shí)取等號(hào)所以ab的最大值等于9故選D點(diǎn)評(píng):本題考查函數(shù)在極值點(diǎn)處的導(dǎo)數(shù)值為0、考查利用基本不等式求最值需注意:一正、二定、三相等4、C【解析】根據(jù),利用對(duì)數(shù)運(yùn)算得到,再利用等比數(shù)列的前n項(xiàng)和公式求解.【詳解】解:因?yàn)?,所以,則,所以數(shù)列是以為首項(xiàng),為公比的等比數(shù)列,所以,故選:C5、D【解析】由歐拉公式的定義和復(fù)數(shù)的概念進(jìn)行求解.【詳解】由題意,得,則復(fù)數(shù)的虛部為.故選:D.6、B【解析】利用充分條件和必要條件的定義結(jié)合等比數(shù)列的性質(zhì)分析判斷【詳解】當(dāng)時(shí),則,則數(shù)列為遞減數(shù)列,當(dāng)是遞增數(shù)列時(shí),,因?yàn)?,所以,則可得,所以“”是“是遞增數(shù)列”的必要不充分條件,故選:B7、A【解析】先設(shè)出弦的兩端點(diǎn)的坐標(biāo),分別代入橢圓方程,兩式相減后整理即可求得弦所在的直線的斜率【詳解】設(shè)弦的兩端點(diǎn)為,,代入橢圓得兩式相減得,即,即,即,即,弦所在的直線的斜率為,故選:A8、B【解析】由題可得,然后結(jié)合條件可得,即求.【詳解】設(shè)于點(diǎn),準(zhǔn)線交軸于點(diǎn)G,則,又,∴,又于點(diǎn)且,∴BE∥AD,∴,即,∴,∴等于.故選:B.9、B【解析】設(shè),由橢圓的定義及,結(jié)合勾股定理求參數(shù)m,進(jìn)而由勾股定理構(gòu)造橢圓參數(shù)的齊次方程求離心率.【詳解】設(shè),橢圓的焦距為,則,由,有,解得,所以,故得:故選:B.10、D【解析】根據(jù)函數(shù)奇偶性排除A、C.當(dāng)時(shí)排除B【詳解】解:由可得所以函數(shù)為偶函數(shù),排除A、C.因?yàn)闀r(shí),,排除B.故選:D.11、C【解析】利用數(shù)量積運(yùn)算性質(zhì)、等比數(shù)列的性質(zhì)及其對(duì)數(shù)運(yùn)算性質(zhì)即可得出【詳解】向量=(,),=(,),且?=4,∴+=4,由等比數(shù)列的性質(zhì)可得:=……===2,則log2(?)=故選C【點(diǎn)睛】本題考查數(shù)量積運(yùn)算性質(zhì)、等比數(shù)列的性質(zhì)及其對(duì)數(shù)運(yùn)算性質(zhì),考查推理能力與計(jì)算能力,屬于中檔題12、C【解析】根據(jù)程序框圖的循環(huán)邏輯寫出執(zhí)行步驟,即可確定輸出結(jié)果.【詳解】根據(jù)流程圖的執(zhí)行邏輯,其執(zhí)行步驟如下:1、成立,則;2、成立,則;3、成立,則;4、成立,則;5、不成立,輸出;故選:C二、填空題:本題共4小題,每小題5分,共20分。13、①.;②..【解析】空一:利用代入法直接進(jìn)行求解即可;空二:利用之間的關(guān)系進(jìn)行求解即可.【詳解】空一:;空二:當(dāng)時(shí),,顯然不適合上式,所以,故答案為:;14、【解析】由題意結(jié)合拋物線的標(biāo)準(zhǔn)方程確定其準(zhǔn)線方程即可.【詳解】由拋物線方程可得,則,故準(zhǔn)線方程為.故答案為【點(diǎn)睛】本題主要考查由拋物線方程確定其準(zhǔn)線方法,屬于基礎(chǔ)題.15、3【解析】利用橢圓標(biāo)準(zhǔn)方程概念求解【詳解】因?yàn)榻裹c(diǎn)為,所以焦點(diǎn)在y軸上,所以故答案:316、6【解析】利用弦心距、半徑與弦長的幾何關(guān)系,結(jié)合點(diǎn)線距離公式即可求弦長.【詳解】由題設(shè),圓心為,則圓心到直線距離為,又圓的半徑為,故.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)①證明見解析;②【解析】(1)根據(jù)題意得,,解方程即可;(2)①設(shè)直線:,直線:,聯(lián)立曲線分別求出點(diǎn)和的坐標(biāo),求直線方程判斷定點(diǎn)即可;②根據(jù)題意得,代入求最值即可.【小問1詳解】根據(jù)題意得,,,又,三個(gè)式子聯(lián)立解得,,,所以橢圓的方程為:【小問2詳解】①證明:設(shè)兩條直線分別為和,根據(jù)題意和得斜率存在且不等于;因?yàn)?,所以設(shè)直線:,直線:;由,解得,所以,同理,.當(dāng)時(shí),,所以直線的方程為:,整理得,此時(shí)直線過定點(diǎn);當(dāng)時(shí),直線的方程為:,此時(shí)直線過定點(diǎn),故直線恒過定點(diǎn).②根據(jù)題意得,,,,所以,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,故的面積的最大值為:.【點(diǎn)睛】解決直線與橢圓綜合問題時(shí),要注意:(1)注意觀察應(yīng)用題設(shè)中的每一個(gè)條件,明確確定直線、橢圓的條件;(2)強(qiáng)化有關(guān)直線與橢圓聯(lián)立得出一元二次方程后的運(yùn)算能力,重視根與系數(shù)之間的關(guān)系、弦長、斜率、三角形的面積等問題18、(1),(2)【解析】(1)先求,再由求出,設(shè)等比數(shù)列的公比為q,由條件可得,解出結(jié)合條件可得答案.(2)由(1)可得,利用錯(cuò)位相減法可求【小問1詳解】,當(dāng)時(shí),,也滿足上式,∴,則.設(shè)等比數(shù)列的公比為q,由得,解得或.因?yàn)槭沁f增等比數(shù)列,所以,.【小問2詳解】①①①②:∴19、(1),;(2)6萬千克,萬元.【解析】(1)根據(jù)題意找等量關(guān)系即可求g(x)解析式,根據(jù)函數(shù)值可求a;(2)根據(jù)g(x)導(dǎo)數(shù)研究其單調(diào)性并求其最大值即可.【小問1詳解】種植萬千克蓮藕的利潤(單位:萬元)為:,,即,,當(dāng)時(shí),,解得,故,;【小問2詳解】,當(dāng)時(shí),,當(dāng)時(shí),,∴函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,∴時(shí),利潤最大為萬元.20、(1);(2)【解析】(1)設(shè)點(diǎn)和,由題意可得點(diǎn)的軌跡方程,將點(diǎn)Q的坐標(biāo)代入T的方程計(jì)算出即可;(2)設(shè)的方程,和,聯(lián)立橢圓方程并消元得到關(guān)于y的一元二次方程,根據(jù)韋達(dá)定理得到,進(jìn)而求出和,根據(jù)平行線間的距離公式可得與的距離,得出所求四邊形面積的表達(dá)式,結(jié)合換元法和基本不等式化簡求值即可.【詳解】解:(1)設(shè)點(diǎn),,則點(diǎn),,,∵,∴,∴,∵點(diǎn)在橢圓上,∴,即為點(diǎn)的軌跡方程又∵點(diǎn)的軌跡是過的圓,∴,解得,所以橢圓的方程為(2)由題意,可設(shè)的方程為,聯(lián)立方程,得設(shè),,則,且,所以,同理,又與的距離為,所以,四邊形的面積為,令,則,且,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立所以,四邊形的面積最大值為21、(1);(2)【解析】(1)根據(jù)向量加減法運(yùn)算法則可得,根據(jù)計(jì)算可得的長度;(2)根據(jù)空間向量的夾角公式計(jì)算可得結(jié)果.【小問1詳解】,因?yàn)?,同理可得,所以【小?詳解】因?yàn)?,所以,因?yàn)?,所以所以異面直線與所成角的余弦值為22、(1);(2).【解析】(1)根據(jù)給定的遞推公式變形

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論