南昌市重點(diǎn)中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第1頁(yè)
南昌市重點(diǎn)中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第2頁(yè)
南昌市重點(diǎn)中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第3頁(yè)
南昌市重點(diǎn)中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第4頁(yè)
南昌市重點(diǎn)中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

南昌市重點(diǎn)中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知a,b為不相等實(shí)數(shù),記,則M與N的大小關(guān)系為()A. B.C. D.不確定2.已知直線與拋物線C:相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),,的斜率分別為,,則()A. B.C. D.3.用反證法證明命題“a,b∈N,如果ab可以被5整除,那么a,b至少有1個(gè)能被5整除.”假設(shè)內(nèi)容是()A.a,b都能被5整除 B.a,b都不能被5整除C.a不能被5整除 D.a,b有1個(gè)不能被5整除4.函數(shù)的圖像在點(diǎn)處的切線方程為()A. B.C. D.5.在正方體中,與直線和都垂直,則直線與的關(guān)系是()A.異面 B.平行C.垂直不相交 D.垂直且相交6.已知函數(shù),則()A.函數(shù)的極大值為,無極小值 B.函數(shù)的極小值為,無極大值C.函數(shù)的極大值為0,無極小值 D.函數(shù)的極小值為0,無極大值7.已知F為橢圓C:=1(a>b>0)右焦點(diǎn),O為坐標(biāo)原點(diǎn),P為橢圓C上一點(diǎn),若|OP|=|OF|,∠POF=120°,則橢圓C的離心率為()A. B.C.-1 D.-18.下列結(jié)論中正確的個(gè)數(shù)為()①,;②;③A.0 B.1C.2 D.39.不等式表示的平面區(qū)域是一個(gè)()A.三角形 B.直角三角形C.矩形 D.梯形10.若數(shù)列的前n項(xiàng)和(n∈N*),則=()A.20 B.30C.40 D.5011.在正方體中,AC與BD的交點(diǎn)為M.設(shè)則下列向量與相等的向量是()A. B.C. D.12.古希臘數(shù)學(xué)家阿波羅尼奧斯(約公元前262~公元前190年)的著作《圓錐曲線論》是古代世界光輝的科學(xué)成果,著作中有這樣一個(gè)命題:平面內(nèi)與兩定點(diǎn)距離的比為常數(shù)k(k>0且k≠1)的點(diǎn)的軌跡是圓,后人將這個(gè)圓稱為阿波羅尼斯圓.已知O(0,0),A(3,0),動(dòng)點(diǎn)P(x,y)滿,則動(dòng)點(diǎn)P軌跡與圓的位置關(guān)系是()A.相交 B.相離C.內(nèi)切 D.外切二、填空題:本題共4小題,每小題5分,共20分。13.雙曲線的離心率為__________14.橢圓的焦距為______.15.已知?jiǎng)訄AP過定點(diǎn),且在定圓的內(nèi)部與其相內(nèi)切,則動(dòng)圓P的圓心的軌跡方程為______16.設(shè)雙曲線C:的焦點(diǎn)為,點(diǎn)為上一點(diǎn),,則為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某城市一入城交通路段限速60公里/小時(shí),現(xiàn)對(duì)某時(shí)段通過該交通路段的n輛小汽車車速進(jìn)行統(tǒng)計(jì),并繪制成頻率分布直方圖(如圖).若這n輛小汽車中,速度在50~60公里小時(shí)之間的車輛有200輛.(1)求n的值;(2)估計(jì)這n輛小汽車車速的中位數(shù);(3)根據(jù)交通法規(guī)定,小車超速在規(guī)定時(shí)速10%以內(nèi)(含10%)不罰款,超過時(shí)速規(guī)定10%以上,需要罰款.試根據(jù)頻率分布直方圖,以頻率作為概率的估計(jì)值,估計(jì)某輛小汽車在該時(shí)段通過該路段時(shí)被罰款的概率.18.(12分)已知圓與軸相切,圓心在直線上,且到直線的距離為(1)求圓的方程;(2)若圓的圓心在第一象限,過點(diǎn)的直線與相交于、兩點(diǎn),且,求直線的方程19.(12分)等差數(shù)列前n項(xiàng)和為,且(1)求通項(xiàng)公式;(2)記,求數(shù)列的前n項(xiàng)和20.(12分)在柯橋古鎮(zhèn)的開發(fā)中,為保護(hù)古橋OA,規(guī)劃在O的正東方向100m的C處向?qū)Π禔B建一座新橋,使新橋BC與河岸AB垂直,并設(shè)立一個(gè)以線段OA上一點(diǎn)M為圓心,與直線BC相切的圓形保護(hù)區(qū)(如圖所示),且古橋兩端O和A與圓上任意一點(diǎn)的距離都不小于50m,經(jīng)測(cè)量,點(diǎn)A位于點(diǎn)O正南方向25m,,建立如圖所示直角坐標(biāo)系(1)求新橋BC的長(zhǎng)度;(2)當(dāng)OM多長(zhǎng)時(shí),圓形保護(hù)區(qū)的面積最???21.(12分)在平面直角坐標(biāo)系xOy中,已知點(diǎn)、,點(diǎn)M滿足,記點(diǎn)M的軌跡為C(1)求C的方程;(2)若直線l過圓圓心D且與圓交于A,B兩點(diǎn),點(diǎn)P為C上一個(gè)動(dòng)點(diǎn),求的最小值22.(10分)如圖,在三棱錐A-BCD中,O為線段BD中點(diǎn),是邊長(zhǎng)為1正三角形,且OA⊥BC,AB=AD(1)證明:平面ABD⊥平面BCD;(2)若|OA|=1,,求平面BCE與平面BCD的夾角的余弦值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】利用作差法即可比較M與N的大小﹒【詳解】因?yàn)?,又,所以,即故選:A2、C【解析】設(shè),,由消得:,又,由韋達(dá)定理代入計(jì)算即可得答案.【詳解】設(shè),,由消得:,所以,故.故選:C【點(diǎn)睛】本題主要考查了直線與拋物線的位置關(guān)系,直線的斜率公式,考查了轉(zhuǎn)化與化歸的思想,考查了學(xué)生的運(yùn)算求解能力.3、B【解析】由于反證法是命題的否定的一個(gè)運(yùn)用,故用反證法證明命題時(shí),可以設(shè)其否定成立進(jìn)行推證.命題“a,b∈N,如果ab可被5整除,那么a,b至少有1個(gè)能被5整除.”的否定是“a,b都不能被5整除”考點(diǎn):反證法4、B【解析】求得函數(shù)的導(dǎo)數(shù),計(jì)算出和的值,可得出所求切線的點(diǎn)斜式方程,化簡(jiǎn)即可.詳解】,,,,因此,所求切線的方程為,即.故選:B.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求解函圖象的切線方程,考查計(jì)算能力,屬于基礎(chǔ)題5、B【解析】以為坐標(biāo)原點(diǎn),所在直線分別為軸,軸,軸建立空間直角坐標(biāo)系,根據(jù)向量垂直的坐標(biāo)表示求出,再利用向量的坐標(biāo)運(yùn)算可得,根據(jù)共線定理即可判斷.【詳解】設(shè)正方體的棱長(zhǎng)為1.以為坐標(biāo)原點(diǎn),所在直線分別為軸,軸,軸建立空間直角坐標(biāo)系,則.設(shè),則,取.,.故選:B【點(diǎn)睛】本題考查了空間向量垂直的坐標(biāo)表示、空間向量的坐標(biāo)表示、空間向量共線定理,屬于基礎(chǔ)題.6、A【解析】利用導(dǎo)數(shù)來求得的極值.【詳解】的定義域?yàn)?,,在遞增;在遞減,所以的極大值為,沒有極小值.故選:A7、D【解析】記橢圓的左焦點(diǎn)為,在中,通過余弦定理得出,,根據(jù)橢圓的定義可得,進(jìn)而可得結(jié)果.【詳解】記橢圓的左焦點(diǎn)為,在中,可得,在中,可得,故,故,故選:D.8、C【解析】構(gòu)造函數(shù)利用導(dǎo)數(shù)說明函數(shù)的單調(diào)性,即可判斷大小,從而得解;【詳解】解:令,,則,所以在上單調(diào)遞增,所以,即,即,,故①正確;令,,則,所以當(dāng)時(shí),,當(dāng)時(shí),,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,即恒成立,所以,故②正確;令,,當(dāng)時(shí),當(dāng)時(shí),所以在上單調(diào)遞減,在上單調(diào)遞增,所以,即,所以,當(dāng)且僅當(dāng)時(shí)取等號(hào),故③錯(cuò)誤;故選:C9、D【解析】作出不等式組所表示平面區(qū)域,可得出結(jié)論.【詳解】由可得或,作出不等式組所表示的平面區(qū)域如下圖中的陰影部分區(qū)域所示:由圖可知,不等式表示的平面區(qū)域是一個(gè)梯形.故選:D.10、B【解析】由前項(xiàng)和公式直接作差可得.【詳解】數(shù)列的前n項(xiàng)和(n∈N*),所以.故選:B.11、C【解析】根據(jù)空間向量的運(yùn)算法則,推出的向量表示,可得答案.【詳解】,故選:C.12、A【解析】首先求得點(diǎn)的軌跡,再利用圓心距與半徑的關(guān)系,即可判斷兩圓的位置關(guān)系.【詳解】由條件可知,,化簡(jiǎn)為:,動(dòng)點(diǎn)的軌跡是以為圓心,2為半徑的圓,圓是以為圓心,為半徑的圓,兩圓圓心間的距離,所以兩圓相交.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】∵雙曲線的方程為∴,∴∴故答案為14、【解析】由求出即可.【詳解】可化為,設(shè)焦距為,則,則焦距故答案為:15、【解析】設(shè)切點(diǎn)為,根據(jù)題意,列出點(diǎn)滿足的關(guān)系式即.則點(diǎn)的軌跡是橢圓,然后根據(jù)橢圓的標(biāo)準(zhǔn)方程求點(diǎn)的軌跡方程【詳解】設(shè)動(dòng)圓和定圓內(nèi)切于點(diǎn),動(dòng)點(diǎn)到定點(diǎn)和定圓圓心距離之和恰好等于定圓半徑,即,點(diǎn)的軌跡是以,為兩焦點(diǎn),長(zhǎng)軸長(zhǎng)為10的橢圓,,點(diǎn)的軌跡方程為,故答案:16、14【解析】利用雙曲線的定義求解即可【詳解】由,得,則,因?yàn)辄c(diǎn)為上一點(diǎn),所以,因?yàn)?,所以,解得或(舍去),故答案為?4三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)(3)【解析】(1)根據(jù)已知條件,結(jié)合頻率與頻數(shù)的關(guān)系,即可求解(2)根據(jù)已知條件,結(jié)合中位數(shù)公式,即可求解(3)在這500輛小車中,有40輛超速,再結(jié)合古典概型的概率公式,即可求解【小問1詳解】解:由直方圖可知,速度在公里小時(shí)之間的頻率為,所以,解得【小問2詳解】解:設(shè)這輛小汽車車速的中位數(shù)為,則,解得小問3詳解】解:由交通法則可知,小車速度在66公里小時(shí)以上需要罰款,由直方圖可知,小車速度在之間有輛,由統(tǒng)計(jì)的有關(guān)知識(shí),可以認(rèn)為車速在公里小時(shí)之間的小車有輛,小車速度在之間有輛,故估計(jì)某輛小汽車在該時(shí)段通過該路段時(shí)被罰放的概率為18、(1)或(2)或【解析】(1)設(shè)圓心的坐標(biāo)為,則該圓的半徑長(zhǎng)為,利用點(diǎn)到直線的距離公式可求得的值,即可得出圓的標(biāo)準(zhǔn)方程;(2)利用勾股定理可求得圓心到的距離,分析可知直線的斜率存在,設(shè)直線的方程為,利用點(diǎn)到直線的距離公式可求得關(guān)于的方程,解出的值,即可得出直線的方程.【小問1詳解】解:設(shè)圓心的坐標(biāo)為,則該圓的半徑長(zhǎng)為,因?yàn)閳A心到直線的距離為,解得,所以圓心的坐標(biāo)為或,半徑為,因此,圓的標(biāo)準(zhǔn)方程為或.【小問2詳解】解:若圓的圓心在第一象限,則圓的標(biāo)準(zhǔn)方程為.因?yàn)?,所以圓心到直線的距離.若直線的斜率不存在,則直線的方程為,此時(shí)圓心到直線的距離為,不合乎題意;所以,直線的斜率存在,可設(shè)直線的方程為,即,由題意可得,解得,所以,直線的方程為或,即或.19、(1);(2).【解析】(1)設(shè)等差數(shù)列的公差為,根據(jù)已知條件求,利用等差數(shù)列的通項(xiàng)公式可求得數(shù)列的通項(xiàng)公式.(2)求得,利用裂項(xiàng)相消法即可求得.【小問1詳解】設(shè)等差數(shù)列的公差為,由,解得,所以,故數(shù)列的通項(xiàng)公式;【小問2詳解】由(1)得:,所以,所以.20、(1)80m;(2).【解析】(1)根據(jù)斜率的公式,結(jié)合解方程組法和兩點(diǎn)間距離公式進(jìn)行求解即可;(2)根據(jù)圓的切線性質(zhì)進(jìn)行求解即可.【小問1詳解】由題意,可知,,∵∴直線BC方程:①,同理可得:直線AB方程:②由①②可知,∴,從而得故新橋BC得長(zhǎng)度為80m【小問2詳解】設(shè),則,圓心,∵直線BC與圓M相切,∴半徑,又因?yàn)?,∵∴,所以?dāng)時(shí),圓M的面積達(dá)到最小21、(1)(2)23【解析】(1)根據(jù)雙曲線的定義判斷軌跡,直接寫出軌跡方程即可;(2)設(shè),利用向量坐標(biāo)運(yùn)算計(jì)算,再由二次函數(shù)求最值即可.【小問1詳解】由,則軌跡C是以點(diǎn)、為左、右焦點(diǎn)的雙曲線的右支,設(shè)軌跡C的方程為,則,可得,,所以C的方程為;【小問2詳解】設(shè),則,且,圓心,則因?yàn)?,則當(dāng)時(shí),取最小值23.22、(1)證明見解析(2)【解析】(1)由題意可得OA⊥平面BCD,從而可證明.(2)作OF⊥BD交BC于點(diǎn)F,如圖,以O(shè)為坐標(biāo)原點(diǎn),分別以O(shè)F,OD,OA所在直線軸建立空間直角坐標(biāo)系,利用向量法可求解.【小問1詳解】因?yàn)锳B=AD,O為BD中點(diǎn),所以O(shè)A⊥BD因?yàn)镺A⊥BC,且BD,BC平面BCD,BD∩BC=B,所以O(shè)A⊥平面

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論