山東省2022-2023學(xué)年高二上學(xué)期12月質(zhì)量檢測(cè)聯(lián)合調(diào)考數(shù)學(xué)試題(含解析)_第1頁
山東省2022-2023學(xué)年高二上學(xué)期12月質(zhì)量檢測(cè)聯(lián)合調(diào)考數(shù)學(xué)試題(含解析)_第2頁
山東省2022-2023學(xué)年高二上學(xué)期12月質(zhì)量檢測(cè)聯(lián)合調(diào)考數(shù)學(xué)試題(含解析)_第3頁
山東省2022-2023學(xué)年高二上學(xué)期12月質(zhì)量檢測(cè)聯(lián)合調(diào)考數(shù)學(xué)試題(含解析)_第4頁
山東省2022-2023學(xué)年高二上學(xué)期12月質(zhì)量檢測(cè)聯(lián)合調(diào)考數(shù)學(xué)試題(含解析)_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

高二質(zhì)量檢測(cè)聯(lián)合調(diào)考數(shù)學(xué)一、選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.1.已知圓SKIPIF1<0:SKIPIF1<0,圓SKIPIF1<0:SKIPIF1<0,則圓SKIPIF1<0與圓SKIPIF1<0位置關(guān)系為()A.相離 B.相交 C.外切 D.內(nèi)切【答案】C【解析】【分析】計(jì)算圓心距,和SKIPIF1<0比較大小,即可判斷兩圓的位置關(guān)系.【詳解】圓SKIPIF1<0的圓心坐標(biāo)是SKIPIF1<0,半徑SKIPIF1<0,圓SKIPIF1<0的圓心坐標(biāo)是SKIPIF1<0,半徑SKIPIF1<0,SKIPIF1<0所以圓心距SKIPIF1<0,所以兩圓相外切.故選:C2.已知SKIPIF1<0是空間的一個(gè)基底,則可以與向量SKIPIF1<0,SKIPIF1<0構(gòu)成空間另一個(gè)基底的向量是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】【分析】根據(jù)空間向量基底的定義依次判斷各選項(xiàng)即可.【詳解】對(duì)于A選項(xiàng),不存在SKIPIF1<0使得SKIPIF1<0成立,故能構(gòu)成空間的另一個(gè)基底;對(duì)于B選項(xiàng),SKIPIF1<0,故不能構(gòu)成空間的另一個(gè)基底;對(duì)于C選項(xiàng),SKIPIF1<0,故不能構(gòu)成空間的另一個(gè)基底;對(duì)于D選項(xiàng),SKIPIF1<0,故不能構(gòu)成空間的另一個(gè)基底.故選:A.3.已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】【分析】利用累加法可求得SKIPIF1<0的值.【詳解】由已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,上述等式全加可得SKIPIF1<0,SKIPIF1<0.故選:D.4.已知雙曲線SKIPIF1<0:SKIPIF1<0的漸近線方程為SKIPIF1<0,則SKIPIF1<0()A.2 B.-2 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】【分析】根據(jù)雙曲線的方程可得漸近線方程為:SKIPIF1<0,結(jié)合題意然后根據(jù)雙曲線標(biāo)準(zhǔn)方程可得SKIPIF1<0,進(jìn)而求解.【詳解】因?yàn)殡p曲線SKIPIF1<0的方程為SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0可得:SKIPIF1<0,所以漸近線方程為:SKIPIF1<0,由題意知:雙曲線SKIPIF1<0:SKIPIF1<0的漸近線方程為SKIPIF1<0,所以SKIPIF1<0,故選:B.5.已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則“SKIPIF1<0”是“SKIPIF1<0”的()A.充分必要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件【答案】A【解析】【分析】由題意可得SKIPIF1<0為等差數(shù)列,后據(jù)此判斷SKIPIF1<0與SKIPIF1<0間關(guān)系可得答案.【詳解】設(shè)SKIPIF1<0首項(xiàng)為SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,則可得SKIPIF1<0.則SKIPIF1<0SKIPIF1<0.故“SKIPIF1<0”是“SKIPIF1<0”的充分必要條件.故選:A6.圖1為一種衛(wèi)星接收天線,其曲面與軸截面的交線為拋物線的一部分,已知該衛(wèi)星接收天線的口徑SKIPIF1<0,深度SKIPIF1<0,信號(hào)處理中心SKIPIF1<0位于焦點(diǎn)處,以頂點(diǎn)SKIPIF1<0為坐標(biāo)原點(diǎn),建立如圖2所示的平面直角坐標(biāo)系SKIPIF1<0,若SKIPIF1<0是該拋物線上一點(diǎn),點(diǎn)SKIPIF1<0,則SKIPIF1<0的最小值為()A.4 B.3 C.2 D.1【答案】B【解析】【分析】由已知點(diǎn)SKIPIF1<0在拋物線上,利用待定系數(shù)法求拋物線方程,結(jié)合拋物線定義求SKIPIF1<0的最小值.【詳解】設(shè)拋物線的方程為SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以點(diǎn)SKIPIF1<0在拋物線上,所以SKIPIF1<0,故SKIPIF1<0,所以拋物線的方程為SKIPIF1<0,所以拋物線的焦點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,準(zhǔn)線方程為SKIPIF1<0,在方程SKIPIF1<0中取SKIPIF1<0可得SKIPIF1<0,所以點(diǎn)SKIPIF1<0在拋物線內(nèi),過點(diǎn)SKIPIF1<0作SKIPIF1<0與準(zhǔn)線垂直,SKIPIF1<0為垂足,點(diǎn)SKIPIF1<0作SKIPIF1<0與準(zhǔn)線垂直,SKIPIF1<0為垂足,則SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)直線SKIPIF1<0與準(zhǔn)線垂直時(shí)等號(hào)成立,所以SKIPIF1<0的最小值為3,故選:B.7.《九章算術(shù)》是我國(guó)古代的數(shù)學(xué)名著,書中將底面為矩形,且有一條側(cè)棱垂直于底面的四棱錐稱為陽馬.如圖,在陽馬SKIPIF1<0中,SKIPIF1<0平面ABCD,底面ABCD是正方形,E,F(xiàn)分別為PD,PB的中點(diǎn),點(diǎn)G在線段AP上,AC與BD交于點(diǎn)O,SKIPIF1<0,若SKIPIF1<0平面SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.1【答案】C【解析】【分析】以SKIPIF1<0為坐標(biāo)原點(diǎn),SKIPIF1<0的方向分別為SKIPIF1<0軸的正方向建立空間直角坐標(biāo)系如圖所示,根據(jù)條件求得點(diǎn)SKIPIF1<0的坐標(biāo),即可得到結(jié)果.【詳解】以SKIPIF1<0為坐標(biāo)原點(diǎn),SKIPIF1<0的方向分別為SKIPIF1<0軸的正方向建立空間直角坐標(biāo)系如圖所示,由題意可得SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,設(shè)平面SKIPIF1<0的法向量為SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0所以平面SKIPIF1<0的一個(gè)法向量為SKIPIF1<0因?yàn)镾KIPIF1<0平面SKIPIF1<0,則SKIPIF1<0設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0解得SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0故選:C.8.已知直線SKIPIF1<0與SKIPIF1<0、SKIPIF1<0軸的交點(diǎn)分別為SKIPIF1<0、SKIPIF1<0,且直線SKIPIF1<0與直線SKIPIF1<0相交于點(diǎn)SKIPIF1<0,則SKIPIF1<0面積的最大值是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】【分析】求出點(diǎn)SKIPIF1<0、SKIPIF1<0的坐標(biāo),可得出SKIPIF1<0的值,求出直線SKIPIF1<0、SKIPIF1<0所過定點(diǎn)的坐標(biāo),根據(jù)SKIPIF1<0可求得點(diǎn)SKIPIF1<0的軌跡方程,根據(jù)圓的幾何性質(zhì)可求得點(diǎn)SKIPIF1<0在直線SKIPIF1<0距離的最大值,再利用三角形的面積公式可求得SKIPIF1<0面積的最大值.【詳解】在直線SKIPIF1<0的方程中,令SKIPIF1<0可得SKIPIF1<0,令SKIPIF1<0可得SKIPIF1<0,即點(diǎn)SKIPIF1<0、SKIPIF1<0,故SKIPIF1<0,將直線SKIPIF1<0的方程變形可得SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,所以,直線SKIPIF1<0過定點(diǎn)SKIPIF1<0,將直線SKIPIF1<0的方程變形為SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,所以,直線SKIPIF1<0過定點(diǎn)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0.①若點(diǎn)SKIPIF1<0不與SKIPIF1<0或SKIPIF1<0重合,則SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,整理可得SKIPIF1<0;②當(dāng)點(diǎn)SKIPIF1<0與SKIPIF1<0或SKIPIF1<0重合,則點(diǎn)SKIPIF1<0、SKIPIF1<0的坐標(biāo)滿足方程SKIPIF1<0.所以,點(diǎn)SKIPIF1<0的軌跡方程為SKIPIF1<0.圓SKIPIF1<0圓心SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,所以,點(diǎn)SKIPIF1<0到直線SKIPIF1<0的最大距離為SKIPIF1<0,因此,SKIPIF1<0面積的最大值是SKIPIF1<0.故選:A.二、選擇題:本題共4小題,每小題5分,共20分.在每小題給出的選項(xiàng)中,有多項(xiàng)符合題目要求.全部選對(duì)的得5分,部分選對(duì)的得2分,有選錯(cuò)的得0分.9.已知直線l在x軸,y軸上的截距分別為1,SKIPIF1<0,O是坐標(biāo)原點(diǎn),則下列結(jié)論中正確的是()A.直線l的方程為SKIPIF1<0B.過點(diǎn)O且與直線l平行的直線方程為SKIPIF1<0C.若點(diǎn)SKIPIF1<0到直線l的距離為SKIPIF1<0,則SKIPIF1<0D.點(diǎn)O關(guān)于直線l對(duì)稱的點(diǎn)為SKIPIF1<0【答案】ABD【解析】【分析】對(duì)A,由截距式可求;對(duì)B,由點(diǎn)斜式可求;對(duì)C,由點(diǎn)線距離公式可求;對(duì)D,兩對(duì)稱點(diǎn)連線與直線l垂直,且兩對(duì)稱點(diǎn)中點(diǎn)過直線l【詳解】對(duì)A,直線l在x軸,y軸上的截距分別為1,SKIPIF1<0,直線l的方程為SKIPIF1<0,即SKIPIF1<0,A對(duì);對(duì)B,直線l斜率為1,故過點(diǎn)O且與直線l平行的直線方程為SKIPIF1<0,即SKIPIF1<0,B對(duì);對(duì)C,點(diǎn)SKIPIF1<0到直線l的距離為SKIPIF1<0,故SKIPIF1<0或0,C錯(cuò);對(duì)D,點(diǎn)O關(guān)于直線l對(duì)稱的點(diǎn)SKIPIF1<0滿足SKIPIF1<0,解得SKIPIF1<0,故該點(diǎn)為SKIPIF1<0,D對(duì).故選:ABD10.“中國(guó)剩余定理”又稱“孫子定理”,此定理講的是關(guān)于整除的問題.現(xiàn)將1到1000這1000個(gè)數(shù)中能被2除余1且被7除余1的數(shù)按從小到大的順序排成一列,構(gòu)成數(shù)列SKIPIF1<0,其前n項(xiàng)和為SKIPIF1<0,則()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0共有72項(xiàng)【答案】BCD【解析】【分析】先求得數(shù)列SKIPIF1<0的通項(xiàng)公式SKIPIF1<0,進(jìn)而求得SKIPIF1<0的值判斷選項(xiàng)A;求得SKIPIF1<0的值判斷選項(xiàng)B;求得SKIPIF1<0的值判斷選項(xiàng)C;求得SKIPIF1<0的項(xiàng)數(shù)判斷選項(xiàng)D.【詳解】將1到1000這1000個(gè)數(shù)中能被2除余1且被7除余1的數(shù)按從小到大的順序排成一列,構(gòu)成首項(xiàng)為1末項(xiàng)為995公差為14的等差數(shù)列則數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0則數(shù)列SKIPIF1<0共有72項(xiàng).故選項(xiàng)D判斷正確;SKIPIF1<0.故選項(xiàng)A判斷錯(cuò)誤;SKIPIF1<0.故選項(xiàng)B判斷正確;SKIPIF1<0.故選項(xiàng)C判斷正確.故選:BCD11.已知橢圓C:SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,P為橢圓C上的一個(gè)動(dòng)點(diǎn),則()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0內(nèi)切圓半徑的最大值是SKIPIF1<0D.SKIPIF1<0的最小值是SKIPIF1<0【答案】ABD【解析】【分析】對(duì)A:根據(jù)橢圓定義,結(jié)合三角形中三條邊的關(guān)系,即可求得求得結(jié)果,從而判斷;對(duì)B:設(shè)SKIPIF1<0,根據(jù)橢圓定義求得SKIPIF1<0,建立SKIPIF1<0關(guān)于SKIPIF1<0的函數(shù)關(guān)系,即可求得其最小值和最大值,從而進(jìn)行判斷;對(duì)C:根據(jù)等面積法,結(jié)合點(diǎn)SKIPIF1<0縱坐標(biāo)絕對(duì)值的范圍,即可求得SKIPIF1<0的最大值;對(duì)D:根據(jù)B中所求,結(jié)合余弦定理和橢圓定義,即可求得結(jié)果.【詳解】對(duì)橢圓C:SKIPIF1<0,易知SKIPIF1<0,SKIPIF1<0;對(duì)A:根據(jù)橢圓定義可知:SKIPIF1<0,當(dāng)點(diǎn)SKIPIF1<0不在長(zhǎng)軸的兩個(gè)端點(diǎn)時(shí),在△SKIPIF1<0中,由三角形三邊關(guān)系可知:SKIPIF1<0SKIPIF1<0;當(dāng)點(diǎn)SKIPIF1<0在橢圓長(zhǎng)軸的左端點(diǎn)時(shí),SKIPIF1<0SKIPIF1<0;當(dāng)點(diǎn)SKIPIF1<0在橢圓長(zhǎng)軸的右端點(diǎn)時(shí),SKIPIF1<0SKIPIF1<0;綜上所述:SKIPIF1<0,故A正確;對(duì)B:設(shè)SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,又SKIPIF1<0在SKIPIF1<0單調(diào)遞增,在SKIPIF1<0單調(diào)遞減,且當(dāng)SKIPIF1<0與SKIPIF1<0時(shí),SKIPIF1<0取得最小值,此時(shí)SKIPIF1<0,故SKIPIF1<0,又當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最大值,此時(shí)SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0,故B正確;對(duì)C:設(shè)△SKIPIF1<0內(nèi)切圓半徑為SKIPIF1<0,由SKIPIF1<0,即SKIPIF1<0,若SKIPIF1<0能構(gòu)成三角形,則SKIPIF1<0,顯然當(dāng)SKIPIF1<0取得最大值SKIPIF1<0時(shí),SKIPIF1<0取得最大值為SKIPIF1<0,故C錯(cuò)誤;對(duì)D:若SKIPIF1<0能構(gòu)成三角形,由余弦定理可得:SKIPIF1<0SKIPIF1<0由選項(xiàng)B中所求可知,SKIPIF1<0的最大值為SKIPIF1<0,此時(shí)SKIPIF1<0取得最小值為SKIPIF1<0;若SKIPIF1<0不能構(gòu)成三角形,則SKIPIF1<0;綜上所述,SKIPIF1<0的最小值為SKIPIF1<0,故D正確;故選:ABD.12.《瀑布》(圖1)是埃舍爾為人所知的作品.畫面兩座高塔各有一個(gè)幾何體,左塔上方是著名的“三立方體合體”(圖2).在棱長(zhǎng)為2的正方體SKIPIF1<0中建立如圖3所示的空間直角坐標(biāo)系(原點(diǎn)O為該正方體的中心,x,y,z軸均垂直該正方體的面),將該正方體分別繞著x軸,y軸,z軸旋轉(zhuǎn)SKIPIF1<0,得到的三個(gè)正方體SKIPIF1<0,SKIPIF1<0,2,3(圖4,5,6)結(jié)合在一起便可得到一個(gè)高度對(duì)稱的“三立方體合體”(圖7).在圖7所示的“三立方體合體”中,下列結(jié)論正確的是()

A.設(shè)點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,SKIPIF1<0,2,3,則SKIPIF1<0B.設(shè)SKIPIF1<0,則SKIPIF1<0C.點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離為SKIPIF1<0D.若G為線段SKIPIF1<0上的動(dòng)點(diǎn),則直線SKIPIF1<0與直線SKIPIF1<0所成角最小為SKIPIF1<0【答案】ACD【解析】【分析】正方體的頂點(diǎn)到中心SKIPIF1<0的距離不變,判斷A,寫出各點(diǎn)坐標(biāo),利用空間向量法求解判斷BCD.【詳解】正方體棱長(zhǎng)為2,面對(duì)角線長(zhǎng)為SKIPIF1<0,由題意SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,旋轉(zhuǎn)后SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,旋轉(zhuǎn)過程中,正方體的頂點(diǎn)到中心SKIPIF1<0的距離不變,始終為SKIPIF1<0,因此選項(xiàng)A中,SKIPIF1<0,2,3,SKIPIF1<0正確;SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則存在實(shí)數(shù)SKIPIF1<0,使得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,B錯(cuò);SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0是平面SKIPIF1<0的一個(gè)法向量,則SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0到平面SKIPIF1<0的距離為SKIPIF1<0,C正確;SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0遞增,SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0遞減,∴SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0夾角的最小值為SKIPIF1<0,從而直線SKIPIF1<0與直線SKIPIF1<0所成角最小為SKIPIF1<0,D正確.故選:ACD.【點(diǎn)睛】方法點(diǎn)睛:本題正方體繞坐標(biāo)軸旋轉(zhuǎn),因此我們可以借助平面直角坐標(biāo)系得出空間點(diǎn)的坐標(biāo),例如繞SKIPIF1<0軸旋轉(zhuǎn)時(shí)時(shí),各點(diǎn)的橫坐標(biāo)(SKIPIF1<0)不變,只要考慮各點(diǎn)在坐標(biāo)平面SKIPIF1<0上的射影繞原點(diǎn)旋轉(zhuǎn)后的坐標(biāo)即可得各點(diǎn)空間坐標(biāo).三、填空題:本題共4小題,每小題5分,共20分.把答案填在答題卡中的橫線上.13.已知SKIPIF1<0是等差數(shù)列SKIPIF1<0的前n項(xiàng)和,且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的公差SKIPIF1<0______.【答案】SKIPIF1<0【解析】【分析】根據(jù)已知條件列方程,由此求得公差SKIPIF1<0.【詳解】依題意得SKIPIF1<0,解得SKIPIF1<0.故答案為:SKIPIF1<014.如圖,在平行六面體SKIPIF1<0中,SKIPIF1<0為SKIPIF1<0的中點(diǎn),SKIPIF1<0,則SKIPIF1<0______;若該六面體的棱長(zhǎng)都為2,SKIPIF1<0,則SKIPIF1<0______.【答案】①.SKIPIF1<0##2.5②.SKIPIF1<0【解析】【分析】由空間向量基本定理和已知條件可得SKIPIF1<0;由SKIPIF1<0結(jié)合向量的數(shù)量積運(yùn)算可得SKIPIF1<0.【詳解】SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;∵SKIPIF1<0SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0.故答案為:SKIPIF1<0;SKIPIF1<0.15.已知雙曲線M:SKIPIF1<0的左焦點(diǎn)為F,右頂點(diǎn)為A,SKIPIF1<0,若SKIPIF1<0是直角三角形,則雙曲線M的離心率為______.【答案】SKIPIF1<0【解析】【分析】利用題給條件列出關(guān)于SKIPIF1<0的關(guān)系式,解之即可求得雙曲線M的離心率【詳解】由SKIPIF1<0是直角三角形,得SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0則SKIPIF1<0,解之得SKIPIF1<0或SKIPIF1<0(舍)故答案為:SKIPIF1<016.已知圓SKIPIF1<0:SKIPIF1<0與圓SKIPIF1<0:SKIPIF1<0,點(diǎn)A,B圓SKIPIF1<0上,且SKIPIF1<0,線段AB的中點(diǎn)為D,則直線OD(O為坐標(biāo)原點(diǎn))被圓SKIPIF1<0截得的弦長(zhǎng)的取值范圍是______.【答案】SKIPIF1<0【解析】【分析】由SKIPIF1<0知點(diǎn)SKIPIF1<0在以SKIPIF1<0為圓心SKIPIF1<0為半徑的圓上,由直線SKIPIF1<0與此圓有交點(diǎn)得SKIPIF1<0,再表示出直線OD被圓SKIPIF1<0截得的弦長(zhǎng)后求其最值即可.【詳解】由題意可知圓SKIPIF1<0的圓心為SKIPIF1<0,半徑SKIPIF1<0,圓SKIPIF1<0的圓心為SKIPIF1<0,半徑SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即點(diǎn)SKIPIF1<0在以SKIPIF1<0為圓心,SKIPIF1<0為半徑的圓上.設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0.圓心SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,直線OD被圓SKIPIF1<0截得的弦長(zhǎng)SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0為減函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0為增函數(shù),故SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),直線SKIPIF1<0經(jīng)過SKIPIF1<0,此時(shí)直線SKIPIF1<0被圓SKIPIF1<0截得的弦長(zhǎng)最長(zhǎng),最長(zhǎng)的弦長(zhǎng)是圓SKIPIF1<0的直徑6.當(dāng)SKIPIF1<0時(shí),直線SKIPIF1<0被圓SKIPIF1<0截得的弦長(zhǎng)最短,則弦長(zhǎng)為SKIPIF1<0;綜上,直線SKIPIF1<0被圓SKIPIF1<0截得的弦長(zhǎng)的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<0【點(diǎn)睛】分式型函數(shù)SKIPIF1<0求最值方法:①轉(zhuǎn)化為反比例函數(shù)求最值;②轉(zhuǎn)化為對(duì)勾函數(shù)或基本不等式求最值;③換元為二次函數(shù)求最值;④用導(dǎo)數(shù)求最值.四、解答題:本題共6小題,共70分.解答應(yīng)寫出文字說明、證明過程或演算步驟.17.已知F是拋物線C:SKIPIF1<0的焦點(diǎn),點(diǎn)M在拋物線C上,且M到F的距離是M到y(tǒng)軸距離的3倍.(1)求M的坐標(biāo);(2)求直線MF被拋物線C所截線段的長(zhǎng)度.【答案】(1)SKIPIF1<0或SKIPIF1<0(2)SKIPIF1<0【解析】【分析】(1)設(shè)出SKIPIF1<0點(diǎn)坐標(biāo),利用已知條件列方程,化簡(jiǎn)求得SKIPIF1<0點(diǎn)的坐標(biāo).(2)求得直線SKIPIF1<0的方程,并與拋物線方程聯(lián)立,求得直線SKIPIF1<0與拋物線的交點(diǎn)坐標(biāo),進(jìn)而求得直線MF被拋物線C所截線段的長(zhǎng)度.【小問1詳解】拋物線的焦點(diǎn)SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0點(diǎn)的坐標(biāo)為SKIPIF1<0或SKIPIF1<0.【小問2詳解】由(1)得SKIPIF1<0點(diǎn)的坐標(biāo)為SKIPIF1<0或SKIPIF1<0.當(dāng)SKIPIF1<0的坐標(biāo)是SKIPIF1<0時(shí),直線SKIPIF1<0的方程為SKIPIF1<0,由SKIPIF1<0,消去SKIPIF1<0并化簡(jiǎn)得SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,所以直線SKIPIF1<0與拋物線的交點(diǎn)坐標(biāo)為SKIPIF1<0和SKIPIF1<0,所以直線MF被拋物線C所截線段的長(zhǎng)度為SKIPIF1<0.當(dāng)SKIPIF1<0的坐標(biāo)是SKIPIF1<0時(shí),同理可求得直線MF被拋物線C所截線段的長(zhǎng)度為SKIPIF1<0.綜上所述,直線MF被拋物線C所截線段的長(zhǎng)度為SKIPIF1<0.18.已知數(shù)列SKIPIF1<0前n項(xiàng)和SKIPIF1<0.(1)求SKIPIF1<0的通項(xiàng)公式;(2)求數(shù)列SKIPIF1<0的前n項(xiàng)和SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【解析】【分析】(1)利用SKIPIF1<0,即可求解數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)由(1)由SKIPIF1<0得SKIPIF1<0,然后分SKIPIF1<0和SKIPIF1<0兩種情況對(duì)SKIPIF1<0化簡(jiǎn)求解即可.【小問1詳解】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,與SKIPIF1<0不符,所以SKIPIF1<0;【小問2詳解】由SKIPIF1<0得SKIPIF1<0,而SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,所以SKIPIF1<019.如圖,三棱柱SKIPIF1<0的底面SKIPIF1<0是正三角形,側(cè)面SKIPIF1<0是菱形,平面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別是棱SKIPIF1<0,SKIPIF1<0的中點(diǎn).(1)證明:SKIPIF1<0∥平面SKIPIF1<0;(2)若SKIPIF1<0,求直線SKIPIF1<0與平面SKIPIF1<0所成角的正弦值.【答案】(1)見解析;(2)SKIPIF1<0.【解析】【分析】(1)取SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,易證四邊形SKIPIF1<0為平行四邊形,從而有SKIPIF1<0∥SKIPIF1<0,故而得證;(2)過點(diǎn)SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,連接SKIPIF1<0,以SKIPIF1<0原點(diǎn),SKIPIF1<0、SKIPIF1<0、SKIPIF1<0分別為SKIPIF1<0軸建立空間直角坐標(biāo)系,用向量法求解即可.【小問1詳解】證明:取SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0分別是棱SKIPIF1<0,SKIPIF1<0的中點(diǎn),則SKIPIF1<0∥SKIPIF1<0∥SKIPIF1<0,SKIPIF1<0,四邊形SKIPIF1<0為平行四邊形,所以SKIPIF1<0∥SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0∥平面SKIPIF1<0;【小問2詳解】解:在平面SKIPIF1<0中過點(diǎn)SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,連接SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,因?yàn)辄c(diǎn)SKIPIF1<0為SKIPIF1<0的中點(diǎn),SKIPIF1<0,故以SKIPIF1<0為原點(diǎn),SKIPIF1<0、SKIPIF1<0、SKIPIF1<0分別為SKIPIF1<0軸建立如圖所示的空間直角坐標(biāo)系,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)平面SKIPIF1<0的法向量為SKIPIF1<0,則有SKIPIF1<0,SKIPIF1<0,所以取SKIPIF1<0,設(shè)直線SKIPIF1<0與平面SKIPIF1<0所成角為SKIPIF1<0,則SKIPIF1<0.20.已知直線SKIPIF1<0:SKIPIF1<0,圓C:SKIPIF1<0.(1)若直線SKIPIF1<0與圓C相切,求k的值.(2)若直線SKIPIF1<0與圓C交于A,B兩點(diǎn),是否存在過點(diǎn)SKIPIF1<0的直線SKIPIF1<0垂直平分弦AB?若存在,求出直線SKIPIF1<0與直線SKIPIF1<0的交點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.【答案】(1)SKIPIF1<0或SKIPIF1<0(2)存在,交點(diǎn)坐標(biāo)為SKIPIF1<0【解析】【分析】(1)由題意圓心到直線的距離等于半徑,列出方程求解即可;(2)由直線SKIPIF1<0與圓C交于A,B兩點(diǎn),可得圓心SKIPIF1<0到直線SKIPIF1<0的距離SKIPIF1<0,由此求出SKIPIF1<0的范圍.根據(jù)圓的性質(zhì)可知直線SKIPIF1<0必經(jīng)過圓心SKIPIF1<0,從而求得直線SKIPIF1<0的斜率,利用點(diǎn)斜式可得直線SKIPIF1<0的方程,由SKIPIF1<0求得SKIPIF1<0,聯(lián)立直線SKIPIF1<0與SKIPIF1<0的方程,可得交點(diǎn)坐標(biāo).【小問1詳解】圓SKIPIF1<0,則圓心SKIPIF1<0,半徑SKIPIF1<0∵若直線SKIPIF1<0與圓C相切,∴圓心SKIPIF1<0到直線SKIPIF1<0的距離SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.【小問2詳解】若直線SKIPIF1<0與圓C交于A,B兩點(diǎn),則圓心SKIPIF1<0到直線SKIPIF1<0的距離SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0.過點(diǎn)SKIPIF1<0的直線SKIPIF1<0垂直平分弦SKIPIF1<0,則直線SKIPIF1<0必經(jīng)過圓心SKIPIF1<0,直線SKIPIF1<0的斜率為SKIPIF1<0,直線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,且直線SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,符合題意,所以直線SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立直線SKIPIF1<0與SKIPIF1<0的方程得SKIPIF1<0,解得SKIPIF1<0所以,存在符合題意的直線SKIPIF1<0,直線SKIPIF1<0與直線SKIPIF1<0的交點(diǎn)坐標(biāo)為SKIPIF1<0.21.如圖,將邊長(zhǎng)為SKIPIF1<0的正方形ABCD沿對(duì)角線AC折起,使得點(diǎn)D到點(diǎn)SKIPIF1<0的位置,連接SKIPIF1<0,O為AC的中點(diǎn).(1)若平面SKIPIF1<0平面ABC,求點(diǎn)O到平面SKIPIF1<0的距離;(2)不考慮點(diǎn)SKIPIF1<0與點(diǎn)B重合的位置,若二面角SKIPIF1<0的余弦值為SKIPIF1<0,求SKIPIF1<0的長(zhǎng)度.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【解析】【分析】(1)連接SKIPIF1<0,根據(jù)面面垂直的性質(zhì)可得SKIPIF1<0平面SKIPIF1<0,然后利用錐體的體積公式結(jié)合等積法即得;(2)取SKIPIF1<0的中點(diǎn)SKIPIF1<0,可得SKIPIF1<0為二面角SKIPIF1<0的平面角,然后利用余弦定理結(jié)合條件可得SKIPIF1<0,進(jìn)而即得.【小問1詳解】連接SKIPIF1<0,則SKIPIF1<0,因?yàn)槠矫鍿KIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,又正方形SKIPIF1<0的邊長(zhǎng)為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,設(shè)點(diǎn)O到平面SKIPIF1<0的距離為SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即點(diǎn)O到平面SKIPIF1<0的距離為SKIPIF1<0;【小問2詳解】取SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0為二面角SKIPIF1<0的平面角,所以SKIPIF1<0,由題可知SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.22.已知橢圓C:SKIPIF1<0與橢圓SKIPIF1<0的離心率相同,SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論