一種基于人工蜂群算法的多目標(biāo)路徑?jīng)Q策方法_第1頁(yè)
一種基于人工蜂群算法的多目標(biāo)路徑?jīng)Q策方法_第2頁(yè)
一種基于人工蜂群算法的多目標(biāo)路徑?jīng)Q策方法_第3頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

一種基于人工蜂群算法的多目標(biāo)路徑?jīng)Q策方法摘要:在多目標(biāo)路徑?jīng)Q策中,尋找最短路徑和最優(yōu)路徑是一個(gè)非常重要的問(wèn)題,這個(gè)問(wèn)題已經(jīng)被廣泛研究。本文提出了一種基于人工蜂群算法的多目標(biāo)路徑?jīng)Q策方法。該方法實(shí)現(xiàn)了由多個(gè)目標(biāo)函數(shù)組成的多目標(biāo)構(gòu)建路徑的優(yōu)化問(wèn)題。最短路徑和最短時(shí)間路徑是最常見(jiàn)的目標(biāo)函數(shù),此外我們還可以將其他目標(biāo)函數(shù)加入到算法中。實(shí)驗(yàn)結(jié)果表明,與其他算法相比,該算法能夠產(chǎn)生更好的性能表現(xiàn)。關(guān)鍵詞:人工蜂群算法,多目標(biāo)路徑?jīng)Q策,優(yōu)化問(wèn)題,目標(biāo)函數(shù)Abstract:Inmulti-objectivepathdecision,findingtheshortestpathandoptimalpathisaveryimportantproblemthathasbeenwidelyresearched.Inthispaper,amulti-objectivepathdecisionmethodbasedonartificialbeecolonyalgorithmisproposed.Themethodrealizestheoptimizationproblemofconstructingapathcomposedofmultipleobjectivefunctions.Theshortestpathandtheshortesttimepatharethemostcommonobjectivefunctions.Inaddition,wecanaddotherobjectivefunctionstothealgorithm.Theexperimentalresultsshowthatcomparedwithotheralgorithms,thealgorithmcanproducebetterperformance.Keywords:ArtificialBeeColonyAlgorithm,multi-objectivepathdecision,optimizationproblem,objectivefunctionIntroduction:Pathdecisionisacriticalandchallengingtaskinmanyfieldsandareas,includingtransportation,supplychainmanagement,andnetworkoptimization.Findingtheshortestpathandoptimalpathisthemostcommonobjectiveofpathdecision.Multiplecriteriamaycomeintoconsiderationwhilemakingthepathdecision,suchasshortestpath,fastestpath,andthepathwiththeleastcost.Artificialbeecolony(ABC)algorithmisametaheuristicoptimizationalgorithmthatmimicstheintelligentforagingbehaviorofhoneybees.ABCalgorithmhasbeenwidelyinvestigatedandappliedinavarietyofoptimizationproblems,suchasneuralnetworkoptimization,imageprocessing,anddataclustering.TheadvantagesofABCincluderapidconvergencecapability,simplicity,andlowcomputationrequirements.Inthispaper,weproposeamulti-objectivepathdecisionmethodbasedonABCalgorithmthatcanoptimizethepathdecisionproblemwithmultiplecriteria.Methodology:Theproposedmethodinvolvesseveralsteps:1.EncodingthepathdecisionproblemThepathdecisionproblemcanbeencodedasagraph,wherenodesrepresentvariouswaypointsorlocations,andedgesrepresentthepathsorconnectionsbetweenthem.Eachedgehasanassociatedweight,whichcanbethedistance,traveltime,oracombinationofmultiplefactors(e.g.,distance,traveltime,elevationchange,etc.).Theobjectivefunctionrepresentsthepathdecisioncriteria,suchastheshortestpathorthefastestpath.2.InitializationABCalgorithmstartsbyinitializingapopulationofsolutioncandidates(i.e.,initialpathsorroutes).Eachsolutioncandidaterepresentsapathinthegraph.Thepopulationsizecanbedeterminedbytrial-and-errororsettoafixednumber.3.Employed-beephaseInthisphase,eachemployedbeerandomlyselectsaneighboringsolutioncandidateandevaluatesitsobjectivefunctionvalue.Basedontheobjectivefunctionvalue,thebeedecidestoeitherkeepitscurrentsolutionorreplaceitwiththenewsolution.Thisdecisionismadebasedonaprobabilityvaluethatiscalculatedbasedonthecurrentobjectivefunctionvalueandthenewobjectivefunctionvalue.4.Onlooker-beephaseInthisphase,onlookerbeesselectsolutionsfromemployedbeesbasedontheirprobabilityvalues.Theonlookerbeesthenrepeatthesameprocessastheemployedbeestogeneratenewsolutioncandidates.5.Scout-beephaseInthisphase,ifanysolutioncandidatebecomesstagnantorhasnotbeenupdatedforacertainnumberofiterations(thresholdvaluecanbeset),ascoutbeeisspawnedtoexplorenewsolutioncandidatesrandomly.Thishelpspreventthealgorithmfromgettingstuckinlocaloptima.6.SolutionupdatingAfterthescout-beephase,thesolutioncandidateswithbetterobjectivefunctionvaluesareselectedasnewsolutions,andthepopulationisupdated.7.TerminationThealgorithmterminateswhenastoppingcriterionismet,suchasamaximumnumberofiterationsortime.ResultsandDiscussion:Inthispaper,weusetwoobjectivefunctionstooptimizethepathdecisionproblem,thetotaldistance,andtotaltraveltime.WecompareourproposedABCalgorithmwithtwootheralgorithms,theantcolonyoptimization(ACO)algorithmandgeneticalgorithm(GA),onseveralbenchmarkdatasets.TheresultsshowthatourproposedABCalgorithmproducesbetterorcomparableresultscomparedtotheothertwoalgorithmsintermsofboththedistanceandtraveltime.ThisisbecauseABCalgorithmefficientlyexploresthesolutionspaceandcanescapefromlocaloptima.ThealgorithmconvergesfasterandreachesmorediversesolutionsthanACOandGA.Conclusion:Inthispaper,weproposedamulti-objectivepathdecisionmethodbasedonABCalgorithm.Byencodingthepathdecisionproblemasagraphandusingmultipleobjectivefunctions,wecanefficientlysearchforthebestpathwithmultiplecriteria.Th

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論