版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
陜西省西安市高新一中、交大附中2023屆高三下學期4月月考試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若的內角滿足,則的值為()A. B. C. D.2.的圖象如圖所示,,若將的圖象向左平移個單位長度后所得圖象與的圖象重合,則可取的值的是()A. B. C. D.3.己知拋物線的焦點為,準線為,點分別在拋物線上,且,直線交于點,,垂足為,若的面積為,則到的距離為()A. B. C.8 D.64.為了得到函數(shù)的圖象,只需把函數(shù)的圖象上所有的點()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度5.已知雙曲線與雙曲線沒有公共點,則雙曲線的離心率的取值范圍是()A. B. C. D.6.已知函數(shù),則()A.函數(shù)在上單調遞增 B.函數(shù)在上單調遞減C.函數(shù)圖像關于對稱 D.函數(shù)圖像關于對稱7.已知,,,,則()A. B. C. D.8.我國古代數(shù)學著作《九章算術》有如下問題:“今有蒲生一日,長三尺莞生一日,長一尺蒲生日自半,莞生日自倍.問幾何日而長倍?”意思是:“今有蒲草第天長高尺,蕪草第天長高尺以后,蒲草每天長高前一天的一半,蕪草每天長高前一天的倍.問第幾天莞草是蒲草的二倍?”你認為莞草是蒲草的二倍長所需要的天數(shù)是()(結果采取“只入不舍”的原則取整數(shù),相關數(shù)據(jù):,)A. B. C. D.9.復數(shù)()A. B. C.0 D.10.在直角梯形中,,,,,點為上一點,且,當?shù)闹底畲髸r,()A. B.2 C. D.11.一個陶瓷圓盤的半徑為,中間有一個邊長為的正方形花紋,向盤中投入1000粒米后,發(fā)現(xiàn)落在正方形花紋上的米共有51粒,據(jù)此估計圓周率的值為(精確到0.001)()A.3.132 B.3.137 C.3.142 D.3.14712.已知命題:“關于的方程有實根”,若為真命題的充分不必要條件為,則實數(shù)的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的圖象在處的切線與直線互相垂直,則_____.14.已知全集為R,集合,則___________.15.下圖是一個算法的流程圖,則輸出的x的值為_______.16.已知實數(shù),且由的最大值是_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖中,為的中點,,,.(1)求邊的長;(2)點在邊上,若是的角平分線,求的面積.18.(12分)已知函數(shù)(為實常數(shù)).(1)討論函數(shù)在上的單調性;(2)若存在,使得成立,求實數(shù)的取值范圍.19.(12分)已知各項均為正數(shù)的數(shù)列的前項和為,且,(,且)(1)求數(shù)列的通項公式;(2)證明:當時,20.(12分)已知在四棱錐中,平面,,在四邊形中,,,,為的中點,連接,為的中點,連接.(1)求證:.(2)求二面角的余弦值.21.(12分)在平面四邊形(圖①)中,與均為直角三角形且有公共斜邊,設,∠,∠,將沿折起,構成如圖②所示的三棱錐,且使=.(1)求證:平面⊥平面;(2)求二面角的余弦值.22.(10分)如圖,在斜三棱柱中,側面與側面都是菱形,,.(Ⅰ)求證:;(Ⅱ)若,求平面與平面所成的銳二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
由,得到,得出,再結合三角函數(shù)的基本關系式,即可求解.【詳解】由題意,角滿足,則,又由角A是三角形的內角,所以,所以,因為,所以.故選:A.【點睛】本題主要考查了正弦函數(shù)的性質,以及三角函數(shù)的基本關系式和正弦的倍角公式的化簡、求值問題,著重考查了推理與計算能力.2、B【解析】
根據(jù)圖象求得函數(shù)的解析式,即可得出函數(shù)的解析式,然后求出變換后的函數(shù)解析式,結合題意可得出關于的等式,即可得出結果.【詳解】由圖象可得,函數(shù)的最小正周期為,,,則,,取,,則,,,可得,當時,.故選:B.【點睛】本題考查利用圖象求函數(shù)解析式,同時也考查了利用函數(shù)圖象變換求參數(shù),考查計算能力,屬于中等題.3、D【解析】
作,垂足為,過點N作,垂足為G,設,則,結合圖形可得,,從而可求出,進而可求得,,由的面積即可求出,再結合為線段的中點,即可求出到的距離.【詳解】如圖所示,作,垂足為,設,由,得,則,.過點N作,垂足為G,則,,所以在中,,,所以,所以,在中,,所以,所以,,所以.解得,因為,所以為線段的中點,所以F到l的距離為.故選:D【點睛】本題主要考查拋物線的幾何性質及平面幾何的有關知識,屬于中檔題.4、D【解析】
通過變形,通過“左加右減”即可得到答案.【詳解】根據(jù)題意,故只需把函數(shù)的圖象上所有的點向右平移個單位長度可得到函數(shù)的圖象,故答案為D.【點睛】本題主要考查三角函數(shù)的平移變換,難度不大.5、C【解析】
先求得的漸近線方程,根據(jù)沒有公共點,判斷出漸近線斜率的取值范圍,由此求得離心率的取值范圍.【詳解】雙曲線的漸近線方程為,由于雙曲線與雙曲線沒有公共點,所以雙曲線的漸近線的斜率,所以雙曲線的離心率.故選:C【點睛】本小題主要考查雙曲線的漸近線,考查雙曲線離心率的取值范圍的求法,屬于基礎題.6、C【解析】
依題意可得,即函數(shù)圖像關于對稱,再求出函數(shù)的導函數(shù),即可判斷函數(shù)的單調性;【詳解】解:由,,所以函數(shù)圖像關于對稱,又,在上不單調.故正確的只有C,故選:C【點睛】本題考查函數(shù)的對稱性的判定,利用導數(shù)判斷函數(shù)的單調性,屬于基礎題.7、D【解析】
令,求,利用導數(shù)判斷函數(shù)為單調遞增,從而可得,設,利用導數(shù)證出為單調遞減函數(shù),從而證出,即可得到答案.【詳解】時,令,求導,,故單調遞增:∴,當,設,,又,,即,故.故選:D【點睛】本題考查了作差法比較大小,考查了構造函數(shù)法,利用導數(shù)判斷式子的大小,屬于中檔題.8、C【解析】
由題意可利用等比數(shù)列的求和公式得莞草與蒲草n天后長度,進而可得:,解出即可得出.【詳解】由題意可得莞草與蒲草第n天的長度分別為據(jù)題意得:,解得2n=12,∴n21.故選:C.【點睛】本題考查了等比數(shù)列的通項公式與求和公式,考查了推理能力與計算能力,屬于中檔題.9、C【解析】略10、B【解析】
由題,可求出,所以,根據(jù)共線定理,設,利用向量三角形法則求出,結合題給,得出,進而得出,最后利用二次函數(shù)求出的最大值,即可求出.【詳解】由題意,直角梯形中,,,,,可求得,所以·∵點在線段上,設,則,即,又因為所以,所以,當時,等號成立.所以.故選:B.【點睛】本題考查平面向量線性運算中的加法運算、向量共線定理,以及運用二次函數(shù)求最值,考查轉化思想和解題能力.11、B【解析】
結合隨機模擬概念和幾何概型公式計算即可【詳解】如圖,由幾何概型公式可知:.故選:B【點睛】本題考查隨機模擬的概念和幾何概型,屬于基礎題12、B【解析】命題p:,為,又為真命題的充分不必要條件為,故二、填空題:本題共4小題,每小題5分,共20分。13、1.【解析】
求函數(shù)的導數(shù),根據(jù)導數(shù)的幾何意義結合直線垂直的直線斜率的關系建立方程關系進行求解即可.【詳解】函數(shù)的圖象在處的切線與直線垂直,函數(shù)的圖象在的切線斜率本題正確結果:【點睛】本題主要考查直線垂直的應用以及導數(shù)的幾何意義,根據(jù)條件建立方程關系是解決本題的關鍵.14、【解析】
先化簡集合A,再求A∪B得解.【詳解】由題得A={0,1},所以A∪B={-1,0,1}.故答案為{-1,0,1}【點睛】本題主要考查集合的化簡和并集運算,意在考查學生對這些知識的理解掌握水平和分析推理能力.15、1【解析】
利用流程圖,逐次進行運算,直到退出循環(huán),得到輸出值.【詳解】第一次:x=4,y=11,第二次:x=5,y=32,第三次:x=1,y=14,此時14>10×1+3,輸出x,故輸出x的值為1.故答案為:.【點睛】本題主要考查程序框圖的識別,“還原現(xiàn)場”是求解這類問題的良方,側重考查邏輯推理的核心素養(yǎng).16、【解析】
將其轉化為幾何意義,然后根據(jù)最值的條件求出最大值【詳解】由化簡得,又實數(shù),圖形為圓,如圖:,可得,則由幾何意義得,則,為求最大值則當過點或點時取最小值,可得所以的最大值是【點睛】本題考查了二元最值問題,將其轉化為幾何意義,得到圓的方程及斜率問題,對要求的二元二次表達式進行化簡,然后求出最值問題,本題有一定難度。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)10;(2).【解析】
(1)由題意可得cos∠ADB=﹣cos∠ADC,由已知利用余弦定理可得:9+BD2﹣52+9+BD2﹣16=0,進而解得BC的值.(2)由(1)可知△ADC為直角三角形,可求S△ADC6,S△ABC=2S△ADC=12,利用角平分線的性質可得,根據(jù)S△ABC=S△BCE+S△ACE可求S△BCE的值.【詳解】(1)因為在邊上,所以,在和中由余弦定理,得,因為,,,,所以,所以,.所以邊的長為10.(2)由(1)知為直角三角形,所以,.因為是的角平分線,所以.所以,所以.即的面積為.【點睛】本題主要考查了余弦定理,三角形的面積公式,角平分線的性質在解三角形中的綜合應用,考查了轉化思想和數(shù)形結合思想,屬于中檔題.18、(1)見解析(2)【解析】
(1)分類討論的值,利用導數(shù)證明單調性即可;(2)利用導數(shù)分別得出,,時,的最小值,即可得出實數(shù)的取值范圍.【詳解】(1),.當即時,,,此時,在上單調遞增;當即時,時,,在上單調遞減;時,,在上單調遞增;當即時,,,此時,在上單調遞減;(2)當時,因為在上單調遞增,所以的最小值為,所以當時,在上單調遞減,在上單調遞增所以的最小值為.因為,所以,.所以,所以.當時,在上單調遞減所以的最小值為因為,所以,所以,綜上,.【點睛】本題主要考查了利用導數(shù)證明函數(shù)的單調性以及利用導數(shù)研究函數(shù)的存在性問題,屬于中檔題.19、(1)(2)見證明【解析】
(1)由題意將遞推關系式整理為關于與的關系式,求得前n項和然后確定通項公式即可;(2)由題意結合通項公式的特征放縮之后裂項求和即可證得題中的不等式.【詳解】(1)由,得,即,所以數(shù)列是以為首項,以為公差的等差數(shù)列,所以,即,當時,,當時,,也滿足上式,所以;(2)當時,,所以【點睛】給出與的遞推關系,求an,常用思路是:一是利用轉化為an的遞推關系,再求其通項公式;二是轉化為Sn的遞推關系,先求出Sn與n之間的關系,再求an.20、(1)見解析;(2)【解析】
(1)連接,證明,得到面,得到證明.(2)以,,所在直線分別為,,軸建立空間直角坐標系,為平面的法向量,平面的一個法向量為,計算夾角得到答案.【詳解】(1)連接,在四邊形中,,平面,面,,,面,又面,,又在直角三角形中,,為的中點,,,面,面,.(2)以,,所在直線分別為,,軸建立空間直角坐標系,,,,,,,設為平面的法向量,,,,,令,則,,,同理可得平面的一個法向量為.設向量與的所成的角為,,由圖形知,二面角為銳二面角,所以余弦值為.【點睛】本題考查了線線垂直,二面角,意在考查學生的計算能力和空間想象能力.21、(1)證明見解析;(2)【解析】
(1)取AB的中點O,連接,證得,從而證得C′O⊥平面ABD,再結合面面垂直的判定定理,即可證得平面⊥平面;(2)以O為原點,AB,OC所在的直線為y軸,z軸,建立的空間直角坐標系,求得平面和平面的法向量,利用向量的夾角公式,即可求解.【詳解】(1)取AB的中點O,連接,,在Rt△和Rt△ADB中,AB=2,則=DO=1,又C′D=,所以,即⊥OD,又⊥AB,且AB∩OD=O,平面ABD,所以⊥平面ABD,又C′O?平面,所以平面⊥平面DAB(2)以O為原點,AB,OC所在的直線為y軸,z軸,建立如圖所示的空間直角坐標系,則A(0,-1,0),B(0,1,0),C′(0,0,1),,所以,,,設平面的法向量為=(),則,即,代入坐標得,令,得,,所以,設平面的法向量為=(),則,即,代入坐標得,令,得,,所以,所以,所以二面角A-C′D-B的余弦值為.【點睛】本題考查了面面垂直的判定與證明,以及空間角的求解問題,意在考查學生的空間想象能力和邏輯推理能力,解答中熟記線面位置關系的判定定理和性質定理,通過嚴密推理是線面位置關系判定的關鍵,同時對于立體幾何中角的計算問
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 體育娛樂保安工作總結
- 航空行業(yè)安全飛行操作
- 腫瘤科護士關懷療養(yǎng)
- 酒店管理工作問題解決途徑
- 藝術活動對學生綜合素質的影響計劃
- 期刊名稱(中英文及所寫對照)
- 神經(jīng)電生理室護理工作總結
- 2024年物業(yè)服務合同(集合篇)
- 2024年設備檔案管理制度
- 2024年經(jīng)典招商代理合同(35篇)
- 2024時事政治試題庫學生專用
- 三級合伙人制度
- 2024年湖北省黃石市黃石港區(qū)政府雇員招聘37人公開引進高層次人才和急需緊缺人才筆試參考題庫(共500題)答案詳解版
- 礦業(yè)施工組織設計方案
- 椎體感染的護理查房
- 產(chǎn)后飲食的健康宣教-課件
- 兒科案例完整-川崎病課件
- RFJ 006-2021 RFP型人防過濾吸收器制造與驗收規(guī)范(暫行)
- 電子行業(yè)認證行業(yè)深度研究報告
- 2022年10月自考00318公共政策試題及答案含解析
- 四川省瀘州市2023-2024學年高二上學期期末考試語文試題
評論
0/150
提交評論