浙江省杭州市學(xué)軍中學(xué)2023年高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析_第1頁(yè)
浙江省杭州市學(xué)軍中學(xué)2023年高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析_第2頁(yè)
浙江省杭州市學(xué)軍中學(xué)2023年高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析_第3頁(yè)
浙江省杭州市學(xué)軍中學(xué)2023年高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析_第4頁(yè)
浙江省杭州市學(xué)軍中學(xué)2023年高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

浙江省杭州市學(xué)軍中學(xué)2023年高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知△的頂點(diǎn)B,C在橢圓上,頂點(diǎn)A是橢圓的一個(gè)焦點(diǎn),且橢圓的另一個(gè)焦點(diǎn)在BC邊上,則△的周長(zhǎng)是()A. B.C.8 D.162.若拋物線焦點(diǎn)與橢圓的右焦點(diǎn)重合,則的值為A. B.C. D.3.設(shè)是橢圓的上頂點(diǎn),若上的任意一點(diǎn)都滿足,則的離心率的取值范圍是()A. B.C. D.4.若圓上恰有2個(gè)點(diǎn)到直線的距離為1,則實(shí)數(shù)的取值范圍為()A B.C. D.5.小明騎車上學(xué),開(kāi)始時(shí)勻速行駛,途中因交通堵塞停留了一段時(shí)間,后為了趕時(shí)間加快速度行駛.與以上事件吻合得最好的圖象是()A. B.C. D.6.已知直線:和:,若,則實(shí)數(shù)的值為()A. B.3C.-1或3 D.-17.已知A(-1,1,2),B(1,0,-1),設(shè)D在直線AB上,且,設(shè)C(λ,+λ,1+λ),若CD⊥AB,則λ的值為()A. B.-C. D.8.已知是拋物線:的焦點(diǎn),直線與拋物線相交于,兩點(diǎn),滿足,記線段的中點(diǎn)到拋物線的準(zhǔn)線的距離為,則的最大值為()A. B.C. D.9.已知雙曲線的左、右焦點(diǎn)分別為,,過(guò)點(diǎn)作直線交雙曲線的右支于A,B兩點(diǎn).若,則雙曲線的離心率為()A. B.C. D.10.第24屆冬季奧林匹克運(yùn)動(dòng)會(huì),將在2022年2月4日在中華人民共和國(guó)北京市和張家口市聯(lián)合舉行.這是中國(guó)歷史上第一次舉辦冬季奧運(yùn)會(huì),北京成為奧運(yùn)史上第一個(gè)舉辦夏季奧林匹克運(yùn)動(dòng)會(huì)和冬季奧林匹克運(yùn)動(dòng)會(huì)的城市.同時(shí)中國(guó)也成為第一個(gè)實(shí)現(xiàn)奧運(yùn)“全滿貫”(先后舉辦奧運(yùn)會(huì)、殘奧會(huì)、青奧會(huì)、冬奧會(huì)、冬殘奧會(huì))國(guó)家.根據(jù)規(guī)劃,國(guó)家體育場(chǎng)(鳥(niǎo)巢)成為北京冬奧會(huì)開(kāi)、閉幕式的場(chǎng)館.國(guó)家體育場(chǎng)“鳥(niǎo)巢”的鋼結(jié)構(gòu)鳥(niǎo)瞰圖如圖所示,內(nèi)外兩圈的鋼骨架是離心率相同的橢圓,若由外層橢圓長(zhǎng)軸一端點(diǎn)和短軸一端點(diǎn)分別向內(nèi)層橢圓引切線,(如圖),且兩切線斜率之積等于,則橢圓的離心率為()A. B.C. D.11.設(shè)函數(shù),,,則()A. B.C. D.12.不等式的解集為()A.或 B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.圓心為直線與直線的交點(diǎn),且過(guò)原點(diǎn)的圓的標(biāo)準(zhǔn)方程是________14.如圖直線過(guò)點(diǎn),且與直線和分別相交于,兩點(diǎn).(1)求過(guò)與交點(diǎn),且與直線垂直的直線方程;(2)若線段恰被點(diǎn)平分,求直線的方程.15.若數(shù)列滿足,,則__________16.歷史上第一個(gè)研究圓錐曲線的是梅納庫(kù)莫斯(公元前375年—325年),大約100年后,阿波羅尼奧更詳盡、系統(tǒng)地研究了圓錐曲線,并且他還進(jìn)一步研究了這些圓錐曲線的光學(xué)性質(zhì),比如:從拋物線的焦點(diǎn)發(fā)出的光線或聲波在經(jīng)過(guò)拋物線反射后,反射光線平行于拋物線的對(duì)稱軸:反之,平行于拋物線對(duì)稱軸的光線,經(jīng)拋物線反射后,反射光線經(jīng)過(guò)拋物線的焦點(diǎn).已知拋物線,經(jīng)過(guò)點(diǎn)一束平行于C對(duì)稱軸的光線,經(jīng)C上點(diǎn)P反射后交C于點(diǎn)Q,則PQ的長(zhǎng)度為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知等差數(shù)列滿足,前7項(xiàng)和為(Ⅰ)求的通項(xiàng)公式(Ⅱ)設(shè)數(shù)列滿足,求的前項(xiàng)和.18.(12分)等比數(shù)列中,,(1)求的通項(xiàng)公式;(2)記為的前n項(xiàng)和.若,求m的值19.(12分)如圖,在四棱錐中,側(cè)面底面,是以為斜邊的等腰直角三角形,,,,點(diǎn)E為的中點(diǎn).(1)證明:平面;(2)求二面角的余弦值.20.(12分)設(shè)F為橢圓的右焦點(diǎn),過(guò)點(diǎn)的直線與橢圓C交于兩點(diǎn).(1)若點(diǎn)B為橢圓C的上頂點(diǎn),求直線的方程;(2)設(shè)直線的斜率分別為,,求證:為定值.21.(12分)如圖所示,在直三棱柱中,,,(1)求三棱柱的表面積;(2)求異面直線與所成角的大?。ńY(jié)果用反三角函數(shù)表示)22.(10分)已知圓:,定點(diǎn),Q為圓上的一動(dòng)點(diǎn),點(diǎn)P在半徑CQ上,且,設(shè)點(diǎn)P的軌跡為曲線E.(1)求曲線E的方程;(2)過(guò)點(diǎn)的直線交曲線E于A,B兩點(diǎn),過(guò)點(diǎn)H與AB垂直的直線與x軸交于點(diǎn)N,當(dāng)取最大值時(shí),求直線AB的方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)橢圓定義求解【詳解】由橢圓定義得△的周長(zhǎng)是,故選:D.2、D【解析】解:橢圓的右焦點(diǎn)為(2,0),所以拋物線的焦點(diǎn)為(2,0),則,故選D3、C【解析】設(shè),由,根據(jù)兩點(diǎn)間的距離公式表示出,分類討論求出的最大值,再構(gòu)建齊次不等式,解出即可【詳解】設(shè),由,因?yàn)?,,所以,因?yàn)?,?dāng),即時(shí),,即,符合題意,由可得,即;當(dāng),即時(shí),,即,化簡(jiǎn)得,,顯然該不等式不成立故選:C【點(diǎn)睛】本題解題關(guān)鍵是如何求出的最大值,利用二次函數(shù)求指定區(qū)間上的最值,要根據(jù)定義域討論函數(shù)的單調(diào)性從而確定最值4、A【解析】求得圓心到直線的距離,根據(jù)題意列出的不等關(guān)系式,即可求得的范圍.【詳解】因?yàn)閳A心到直線的距離,故要滿足題意,只需,解得.故選:A.5、C【解析】先研究四個(gè)選項(xiàng)中圖象的特征,再對(duì)照小明上學(xué)路上的運(yùn)動(dòng)特征,兩者對(duì)應(yīng)即可選出正確選項(xiàng).【詳解】考查四個(gè)選項(xiàng),橫坐標(biāo)表示時(shí)間,縱坐標(biāo)表示的是離開(kāi)學(xué)校的距離,由此知,此函數(shù)圖象一定是下降的,由此排除A;再由小明騎車上學(xué),開(kāi)始時(shí)勻速行駛可得出圖象開(kāi)始一段是直線下降型,又途中因交通堵塞停留了一段時(shí)間,故此時(shí)有一段函數(shù)圖象與x軸平行,由此排除D,之后為了趕時(shí)間加快速度行駛,此一段時(shí)間段內(nèi)函數(shù)圖象下降的比較快,由此可確定C正確,B不正確故選C【點(diǎn)睛】本題考查函數(shù)的表示方法,關(guān)鍵是理解坐標(biāo)系的度量與小明上學(xué)的運(yùn)動(dòng)特征,屬于基礎(chǔ)題.6、D【解析】利用兩直線平行列式求出a值,再驗(yàn)證即可判斷作答.【詳解】因,則,解得或,當(dāng)時(shí),與重合,不符合題意,當(dāng)時(shí),,符合題意,所以實(shí)數(shù)的值為-1.故選:D7、B【解析】設(shè)D(x,y,z),根據(jù)求出D(,,0),再根據(jù)CD⊥AB得·=2(-λ)+λ-3(-1-λ)=0,解方程即得λ的值.【詳解】設(shè)D(x,y,z),則=(x+1,y-1,z-2),=(2,-1,-3),=(1-x,-y,-1-z),∵=2,∴∴∴D(,,0),=(-λ,-λ,-1-λ),∵⊥,∴·=2(-λ)+λ-3(-1-λ)=0,∴λ=-故選:B【點(diǎn)睛】(1)本題主要考查向量的線性運(yùn)算和空間向量垂直的坐標(biāo)表示,意在考查學(xué)生對(duì)這些知識(shí)的掌握水平和分析推理能力.(2).8、C【解析】設(shè),過(guò)點(diǎn),分別作拋物線的準(zhǔn)線的垂線,垂足分別為,進(jìn)而得,再結(jié)合余弦定理得,進(jìn)而根據(jù)基本不等式求解得.【詳解】解:設(shè),過(guò)點(diǎn),分別作拋物線的準(zhǔn)線的垂線,垂足分別為,則,因?yàn)辄c(diǎn)為線段中點(diǎn),所以根據(jù)梯形中位線定理得點(diǎn)到拋物線的準(zhǔn)線的距離為,因?yàn)?,所以在中,由余弦定理得,所以,又因?yàn)?,所以,?dāng)且僅當(dāng)時(shí)等號(hào)成立,所以,故.所以的最大值為.故選:C【點(diǎn)睛】本題考查拋物線的定義,直線與拋物線的位置關(guān)系,余弦定理,基本不等式,考查運(yùn)算求解能力,是中檔題.本題解題的關(guān)鍵在于根據(jù)題意,設(shè),進(jìn)而結(jié)合拋物線的定于與余弦定理得,,再求最值.9、A【解析】根據(jù)給定條件結(jié)合雙曲線定義求出,,再借助余弦定理求出半焦距c即可計(jì)算作答.【詳解】因,令,,而雙曲線實(shí)半軸長(zhǎng),由雙曲線定義知,,而,于是可得,在等腰中,,令雙曲線半焦距為c,在中,由余弦定理得:,而,,,解得,所以雙曲線的離心率為.故選:A【點(diǎn)睛】方法點(diǎn)睛:求雙曲線的離心率的方法:(1)定義法:通過(guò)已知條件列出方程組,求得得值,根據(jù)離心率的定義求解離心率;(2)齊次式法:由已知條件得出關(guān)于的二元齊次方程,然后轉(zhuǎn)化為關(guān)于的一元二次方程求解;(3)特殊值法:通過(guò)取特殊值或特殊位置,求出離心率.10、B【解析】分別設(shè)內(nèi)外層橢圓方程為、,進(jìn)而設(shè)切線、分別為、,聯(lián)立方程組整理并結(jié)合求、關(guān)于a、b、m的關(guān)系式,再結(jié)合已知得到a、b的齊次方程求離心率即可.【詳解】若內(nèi)層橢圓方程為,由離心率相同,可設(shè)外層橢圓方程為,∴,設(shè)切線為,切線為,∴,整理得,由知:,整理得,同理,,可得,∴,即,故.故選:B.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:根據(jù)內(nèi)外橢圓的離心率相同設(shè)橢圓方程,并寫出切線方程,聯(lián)立方程結(jié)合及已知條件,得到橢圓參數(shù)的齊次方程求離心率.11、A【解析】根據(jù)導(dǎo)數(shù)得出在的單調(diào)性,進(jìn)而由單調(diào)性得出大小關(guān)系.【詳解】因?yàn)?,所以在上單調(diào)遞增.因?yàn)?,所以,而,所?因?yàn)?,且,所?即.故選:A12、A【解析】根據(jù)一元二次不等式的解法可得答案.【詳解】由不等式可得或不等式的解集為或故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由,求得圓心,再根據(jù)圓過(guò)原點(diǎn),求得半徑即可.【詳解】由,可得,即圓心為,又圓過(guò)原點(diǎn),所以圓的半徑,故圓的標(biāo)準(zhǔn)方程為故答案為:【點(diǎn)睛】本題主要考查圓的方程的求法,屬于基礎(chǔ)題.14、(1);(2).【解析】本題考查直線方程的基本求法:垂直直線的求法、點(diǎn)關(guān)于點(diǎn)對(duì)稱、點(diǎn)在直線上的待定系數(shù)法【詳解】(1)由題可得交點(diǎn),所以所求直線方程為,即;(2)設(shè)直線與直線相交于點(diǎn),因?yàn)榫€段恰被點(diǎn)平分,所以直線與直線的交點(diǎn)的坐標(biāo)為將點(diǎn),的坐標(biāo)分別代入,的方程,得方程組解得由點(diǎn)和點(diǎn)及兩點(diǎn)式,得直線的方程為,即【點(diǎn)睛】直線的考法主要以點(diǎn)的對(duì)稱和直線的平行與垂直為主.點(diǎn)關(guān)于點(diǎn)的對(duì)稱,點(diǎn)關(guān)于直線的對(duì)稱,直線關(guān)于直線的對(duì)稱,是重點(diǎn)考察內(nèi)容15、7【解析】根據(jù)遞推公式,依次求得值.【詳解】依題意,由,可知,故答案為:716、####【解析】根據(jù)題意,求得點(diǎn)以及拋物線焦點(diǎn)的坐標(biāo),即可求得所在直線方程,聯(lián)立其與拋物線方程,求得點(diǎn)的坐標(biāo),即可求得.【詳解】因?yàn)榻?jīng)過(guò)點(diǎn)一束平行于C對(duì)稱軸的光線交拋物線于點(diǎn),故對(duì),令,則可得,也即的坐標(biāo)為,又拋物線的焦點(diǎn)的坐標(biāo)為,故可得直線方程為,聯(lián)立拋物線方程可得:,,解得或,將代入,可得,即的坐標(biāo)為,則.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2).【解析】(1)根據(jù)等差數(shù)列的求和公式可得,得,然后由已知可得公差,進(jìn)而求出通項(xiàng);(2)先明確=,為等差乘等比型通項(xiàng)故只需用錯(cuò)位相減法即可求得結(jié)論.解析:(Ⅰ)由,得因?yàn)樗裕á颍?8、(1)或;(2)5.【解析】(1)設(shè)的公比為q,解方程即得解;(2)分兩種情況解方程即得解.【小問(wèn)1詳解】解:設(shè)的公比為q,由題設(shè)得由已知得,解得(舍去),或故或【小問(wèn)2詳解】解:若,則由,得,解得若,則由,得,因?yàn)?,所以此方程沒(méi)有正整數(shù)解綜上,19、(1)見(jiàn)解析;(2)【解析】(1)用線線平行證明線面平行,∴在平面PCD內(nèi)作BE的平行線即可;(2)求二面角的大小,可以用空間向量進(jìn)行求解,根據(jù)已知條件,以AD中點(diǎn)O為原點(diǎn),OB,AD,OP分別為x、y、z軸建立坐標(biāo)系﹒【小問(wèn)1詳解】如圖,取PD中點(diǎn)F,連接EF,F(xiàn)C﹒∵E是AP中點(diǎn),∴EFAD,由題知BCAD,∴BCEF,∴BCFE是平行四邊形,∴BE∥CF,又CF平面PCD,BE平面PCD,∴BE∥平面PCD;【小問(wèn)2詳解】取AD中點(diǎn)O,連接OP,OB,∵是以為斜邊等腰直角三角形,∴OP⊥AD,又平面平面,平面PAD∩平面=AD,∴OP⊥平面ABCD,∵OB平面ABCD,∴OP⊥OB,由BC∥AD,CD⊥AD,AD=2BC知OB⊥OD,∴OP、OB、OD兩兩垂直,故以O(shè)原點(diǎn),OB、OD、OP分別為x、y、z軸,建立空間直角坐標(biāo)系Oxyz,如圖:設(shè)|BC|=1,則B(1,0,0),D(0,1,0),E(0,),P(0,0,1),則,設(shè)平面BED的法向量為,平面PBD的法向量為則,取,,取設(shè)二面角的大小為θ,則cosθ=﹒20、(1);(2)證明見(jiàn)解析.【解析】(1)求出的直線方程,結(jié)合橢圓方程可求的坐標(biāo),從而可求的直線方程;(2)設(shè),直線(或),則可用兩點(diǎn)的坐標(biāo)表示或,聯(lián)立直線的方程和橢圓的方程,消元后利用韋達(dá)定理可化簡(jiǎn)前者從而得到要證明的結(jié)論【詳解】(1)若B為橢圓的上頂點(diǎn),則.又過(guò)點(diǎn),故直線由可得,解得即點(diǎn),又,故直線;(2)設(shè),方法一:設(shè)直線,代入橢圓方程可得:所以,故,又均不為0,故,即為定值方法二:設(shè)直線,代入橢圓方程可得:所以所以,即,所以,即為定值方法三:設(shè)直線,代入橢圓方程可得:所以,所以所以,把代入得方法四:設(shè)直線,代入橢圓的方程可得,則所以.因?yàn)椋氲?【點(diǎn)睛】思路點(diǎn)睛:直線與圓錐曲線的位置關(guān)系中的定點(diǎn)、定值、最值問(wèn)題,一般可通過(guò)聯(lián)立方程組并消元得到關(guān)于或的一元二次方程,再把要求解的目標(biāo)代數(shù)式化為關(guān)于兩個(gè)的交點(diǎn)橫坐標(biāo)或縱坐標(biāo)的關(guān)系式,該關(guān)系中含有或,最后利用韋達(dá)定理把關(guān)系式轉(zhuǎn)化為若干變量的方程(或函數(shù)),從而可求定點(diǎn)、定值、最值問(wèn)題.21、(1);(2)【解析】(1)利用S=2S△ABC+S側(cè),可得三棱柱ABC﹣A1B1C1的表面積S;(2)連接BC1,確定∠B

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論