上海市復(fù)旦附中浦東分校2023年高二上數(shù)學(xué)期末調(diào)研模擬試題含解析_第1頁(yè)
上海市復(fù)旦附中浦東分校2023年高二上數(shù)學(xué)期末調(diào)研模擬試題含解析_第2頁(yè)
上海市復(fù)旦附中浦東分校2023年高二上數(shù)學(xué)期末調(diào)研模擬試題含解析_第3頁(yè)
上海市復(fù)旦附中浦東分校2023年高二上數(shù)學(xué)期末調(diào)研模擬試題含解析_第4頁(yè)
上海市復(fù)旦附中浦東分校2023年高二上數(shù)學(xué)期末調(diào)研模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

上海市復(fù)旦附中浦東分校2023年高二上數(shù)學(xué)期末調(diào)研模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在數(shù)列中,,則()A.2 B.C. D.2.已知在等比數(shù)列中,,,則()A.9或 B.9C.27或 D.273.設(shè)數(shù)列的前項(xiàng)和為,數(shù)列是公比為2的等比數(shù)列,且,則()A.255 B.257C.127 D.1294.已知數(shù)列滿(mǎn)足:且,則此數(shù)列的前20項(xiàng)的和為()A.621 B.622C.1133 D.11345.若圓與直線(xiàn)相切,則()A.3 B.或3C. D.或6.已知橢圓的離心率,為橢圓上的一個(gè)動(dòng)點(diǎn),若定點(diǎn),則的最大值為A. B.C. D.7.已知橢圓C:()的長(zhǎng)軸的長(zhǎng)為4,焦距為2,則C的方程為()A B.C. D.8.已知滿(mǎn)約束條件,則的最大值為()A.0 B.1C.2 D.39.如圖,正四棱柱是由四個(gè)棱長(zhǎng)為1的小正方體組成的,是它的一條側(cè)棱,是它的上底面上其余的八個(gè)點(diǎn),則集合的元素個(gè)數(shù)()A.1 B.2C.4 D.810.在等比數(shù)列中,,公比,則()A. B.6C. D.211.下列關(guān)于拋物線(xiàn)的圖象描述正確的是()A.開(kāi)口向上,焦點(diǎn)為 B.開(kāi)口向右,焦點(diǎn)為C.開(kāi)口向上,焦點(diǎn)為 D.開(kāi)口向右,焦點(diǎn)為12.已知正實(shí)數(shù)x,y滿(mǎn)足4x+3y=4,則的最小值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.經(jīng)過(guò)兩點(diǎn)的直線(xiàn)的傾斜角為,則___________.14.已知向量,且,則實(shí)數(shù)________________15.已知向量,,,若,則____________.16.等比數(shù)列的前項(xiàng)和為,則的值為_(kāi)____三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)圓心在軸正半軸上、半徑為2的圓與直線(xiàn)相交于兩點(diǎn)且.(1)求圓的標(biāo)準(zhǔn)方程;(2)若直線(xiàn),圓上僅有一個(gè)點(diǎn)到直線(xiàn)的距離為1,求直線(xiàn)的方程.18.(12分)已知曲線(xiàn)C的方程為(1)判斷曲線(xiàn)C是什么曲線(xiàn),并求其標(biāo)準(zhǔn)方程;(2)過(guò)點(diǎn)的直線(xiàn)l交曲線(xiàn)C于M,N兩點(diǎn),若點(diǎn)P為線(xiàn)段MN的中點(diǎn),求直線(xiàn)l的方程19.(12分)已知函數(shù)f(x)=x3﹣3ax2+2bx在x=處有極大值.(1)求a、b的值;(2)求f(x)在[0,2]上的值域.20.(12分)如圖,幾何體中,平面,,,,E是中點(diǎn),二面角的平面角為.(1)求證:平面;(2)求直線(xiàn)與平面所成角的正弦值.21.(12分)某書(shū)店剛剛上市了《中國(guó)古代數(shù)學(xué)史》,銷(xiāo)售前該書(shū)店擬定了5種單價(jià)進(jìn)行試銷(xiāo),每種單價(jià)(元)試銷(xiāo)l天,得到如表單價(jià)(元)與銷(xiāo)量(冊(cè))數(shù)據(jù):?jiǎn)蝺r(jià)(元)1819202122銷(xiāo)量(冊(cè))6156504845(l)根據(jù)表中數(shù)據(jù),請(qǐng)建立關(guān)于的回歸直線(xiàn)方程:(2)預(yù)計(jì)今后的銷(xiāo)售中,銷(xiāo)量(冊(cè))與單價(jià)(元)服從(l)中的回歸方程,已知每?jī)?cè)書(shū)的成本是12元,書(shū)店為了獲得最大利潤(rùn),該冊(cè)書(shū)的單價(jià)應(yīng)定為多少元?附:,,,.22.(10分)已知橢圓的左、右頂點(diǎn)坐標(biāo)分別是,,短軸長(zhǎng)等于焦距.(1)求橢圓的方程;(2)若直線(xiàn)與橢圓相交于兩點(diǎn),線(xiàn)段的中點(diǎn)為,求.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)遞推關(guān)系,代入數(shù)據(jù),逐步計(jì)算,即可得答案.【詳解】由題意得,令,可得,令,可得,令,可得,令,可得.故選:D2、B【解析】根據(jù)等比數(shù)列的性質(zhì)可求.【詳解】因?yàn)闉榈缺葦?shù)列,設(shè)公比為,則,解得,又,所以.故選:B.3、C【解析】由題設(shè)可得,再由即可求值.【詳解】由數(shù)列是公比為2的等比數(shù)列,且,∴,即,∴.故選:C.4、C【解析】這個(gè)數(shù)列的奇數(shù)項(xiàng)是公差為2的等差數(shù)列,偶數(shù)項(xiàng)是公比為2的等比數(shù)列,只要分開(kāi)來(lái)計(jì)算即可.【詳解】由于,所以當(dāng)n為奇數(shù)時(shí),是等差數(shù)列,即:共10項(xiàng),和為;,共10項(xiàng),其和為;∴該數(shù)列前20項(xiàng)的和;故選:C.5、B【解析】根據(jù)圓與與直線(xiàn)相切,利用圓心到直線(xiàn)的距離等于半徑求解.【詳解】圓的標(biāo)準(zhǔn)方程為:,則圓心為,半徑為,因?yàn)閳A與與直線(xiàn)相切,所以圓心到直線(xiàn)的距離等于半徑,即,解得或,故選:B6、C【解析】首先求得橢圓方程,然后確定的最大值即可.【詳解】由題意可得:,據(jù)此可得:,橢圓方程為,設(shè)橢圓上點(diǎn)的坐標(biāo)為,則,故:,當(dāng)時(shí),.本題選擇C選項(xiàng).【點(diǎn)睛】本題主要考查橢圓方程問(wèn)題,橢圓中的最值問(wèn)題等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.7、D【解析】由題設(shè)可得求出橢圓參數(shù),即可得方程.【詳解】由題設(shè),知:,可得,則,∴C的方程為.故選:D.8、B【解析】作出給定不等式表示的平面區(qū)域,再借助幾何意義即可求出的最大值.【詳解】畫(huà)出不等式組表示的平面區(qū)域,如圖中陰影,其中,,目標(biāo)函數(shù),即表示斜率為2,縱截距為的平行直線(xiàn)系,作出直線(xiàn),平移直線(xiàn)到直線(xiàn),使其過(guò)點(diǎn)A時(shí),的縱截距最小,最大,則,所以的最大值為1.故選:B9、A【解析】用空間直角坐標(biāo)系看正四棱柱,根據(jù)向量數(shù)量積進(jìn)行計(jì)算即可.【詳解】建立空間直角坐標(biāo)系,為原點(diǎn),正四棱柱的三個(gè)邊的方向分別為軸、軸和看軸,如右圖示,,設(shè),則AB所以集合,元素個(gè)數(shù)為1.故選:A.10、D【解析】利用等比數(shù)列的通項(xiàng)公式求解【詳解】由等比數(shù)列的通項(xiàng)公式得:.故選:D11、A【解析】把化成拋物線(xiàn)標(biāo)準(zhǔn)方程,依據(jù)拋物線(xiàn)幾何性質(zhì)看開(kāi)口方向,求其焦點(diǎn)坐標(biāo)即可解決.【詳解】,即.則,即故此拋物線(xiàn)開(kāi)口向上,焦點(diǎn)為故選:A12、A【解析】將4x+3y=4變形為含2x+1和3y+2的等式,即2(2x+1)+(3y+2)=8,再由換元法、基本不等式換“1”的代換求解即可【詳解】由正實(shí)數(shù)x,y滿(mǎn)足4x+3y=4,可得2(2x+1)+(3y+2)=8,令a=2x+1,b=3y+2,可得2a+b=8,∴,即,當(dāng)且僅當(dāng)時(shí)取等號(hào),∴的最小值為.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】由兩點(diǎn)間的斜率公式及直線(xiàn)斜率的定義即可求解.【詳解】解:因?yàn)檫^(guò)兩點(diǎn)的直線(xiàn)的傾斜角為,所以,解得,故答案為:2.14、【解析】,利用向量的數(shù)量積的坐標(biāo)運(yùn)算即可.【詳解】,則,解得故答案為:15、【解析】首先求出的坐標(biāo),再根據(jù)向量垂直得到,即可得到方程,解得即可;【詳解】解:因?yàn)橄蛄?,,,所以向量,因?yàn)?,所以,即,解得故答案為?6、【解析】根據(jù)等比數(shù)列前項(xiàng)和公式的特點(diǎn)列方程,解方程求得的值.【詳解】由于等比數(shù)列前項(xiàng)和,本題中,故.故填:.【點(diǎn)睛】本小題主要考查等比數(shù)列前項(xiàng)和公式的特點(diǎn),考查觀(guān)察與思考的能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)或.【解析】(1)根據(jù)圓的弦長(zhǎng)公式進(jìn)行求解即可;(2)根據(jù)平行線(xiàn)的性質(zhì),結(jié)合直線(xiàn)與圓的位置關(guān)系進(jìn)行求解即可.小問(wèn)1詳解】因?yàn)閳A的圓心在軸正半軸上、半徑為2,所以設(shè)方程為:,圓心,設(shè)圓心到直線(xiàn)的距離為,因?yàn)?,所以有,或舍去,所以圓的標(biāo)準(zhǔn)方程為;【小問(wèn)2詳解】由(1)可知:,圓的半徑為,因?yàn)橹本€(xiàn),所以設(shè)直線(xiàn)的方程為,因?yàn)閳A上僅有一個(gè)點(diǎn)到直線(xiàn)的距離為1,所以直線(xiàn)與該圓相離,當(dāng)兩平行線(xiàn)間的距離為,于是有:,當(dāng)時(shí),圓心到直線(xiàn)的距離為:,符合題意;當(dāng)時(shí),圓心到直線(xiàn)的距離為::,不符合題意,此時(shí)直線(xiàn)的方程為.當(dāng)兩平行線(xiàn)間的距離為,于是有:,當(dāng)時(shí),圓心到直線(xiàn)的距離為:,不符合題意;當(dāng)時(shí),圓心到直線(xiàn)的距離為::,不符合題意,此時(shí)直線(xiàn)的方程為.故直線(xiàn)方程為或.18、(1);(2).【解析】(1)根據(jù)橢圓的定義即可判斷并求解;(2)根據(jù)點(diǎn)差法即可求解中點(diǎn)弦斜率和中點(diǎn)弦方程.【小問(wèn)1詳解】設(shè),,E(x,y),∵,,且,點(diǎn)的軌跡是以,為焦點(diǎn),長(zhǎng)軸長(zhǎng)為4的橢圓設(shè)橢圓C的方程為,記,則,,,,,曲線(xiàn)的標(biāo)準(zhǔn)方程為【小問(wèn)2詳解】根據(jù)橢圓對(duì)稱(chēng)性可知直線(xiàn)l斜率存在,設(shè),則,由①-②得,,∴l(xiāng):,即.19、(1)(2)【解析】(1)由于在點(diǎn)處有極小值,所以,從而可求出、的值;(2)由(1)可得,得在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,從而可求出其值域.【小問(wèn)1詳解】因?yàn)楹瘮?shù)在處有極大值,所以,①且②聯(lián)立①②得:;【小問(wèn)2詳解】由(1)得,所以,由得;由得,所以,函數(shù)區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增;又,所以在上的值域?yàn)?20、(1)證明見(jiàn)解答;(2)【解析】(1)平面,可得,是二面角的平面角,由余弦定理可得,,從而可證平面;(2)以為坐標(biāo)原點(diǎn),,,所在直線(xiàn)為坐標(biāo)軸建立如圖所示的空間直角坐標(biāo)系,求平面的一個(gè)法向量與的方向向量,利用向量法可求直線(xiàn)與平面所成角的正弦值【小問(wèn)1詳解】證明:取中點(diǎn),又是中點(diǎn),,,平面,平面,,平面,是二面角的平面角,,又,,在中,由余弦定理有,可得,又是中點(diǎn),,平面,,又,平面,平面.【小問(wèn)2詳解】解:以為坐標(biāo)原點(diǎn),,,所在直線(xiàn)為坐標(biāo)軸建立如圖所示的空間直角坐標(biāo)系,則,0,,,1,,,0,,,1,,1,,,0,,,1,設(shè)平面的一個(gè)法向量為,,,則,令,則,,平面的一個(gè)法向量為,,,設(shè)直線(xiàn)與平面所成角為,則,直線(xiàn)與平面所成角的正弦值為21、(1)(2)當(dāng)單價(jià)應(yīng)定為22.5元時(shí),可獲得最大利潤(rùn)【解析】(l)先計(jì)算的平均值,再代入公式計(jì)算得到(2)計(jì)算利潤(rùn)為:計(jì)算最大值.【詳解】解:(1),,,所以對(duì)的回歸直線(xiàn)方程為:(2)設(shè)獲得的利潤(rùn)為,,因?yàn)槎魏瘮?shù)的開(kāi)口向下,所以當(dāng)時(shí),取最大值,所以當(dāng)單價(jià)應(yīng)定為22.5元時(shí),可獲得最大利潤(rùn)【點(diǎn)睛】本題考查了回歸方程,函數(shù)的最值,意在考查學(xué)生的計(jì)算能力.22、(1);(2).【解析

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論