




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
上海市華師大三附中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.過(guò)拋物線C:y2=4x的焦點(diǎn)F分別作斜率為k1、k2的直線l1、l2,直線l1與C交于A、B兩點(diǎn),直線l2與C交于D、E兩點(diǎn),若|k1·k2|=2,則|AB|+|DE|的最小值為()A.10 B.12C.14 D.162.設(shè)拋物線上一點(diǎn)到軸的距離是4,則點(diǎn)到該拋物線焦點(diǎn)的距離是()A.6 B.8C.9 D.103.已知數(shù)列是等差數(shù)列,為數(shù)列的前項(xiàng)和,,,則()A.54 B.71C.81 D.804.?dāng)?shù)學(xué)家歐拉1765年在其所著的《三角形幾何學(xué)》一書(shū)中提出:任意三角形的外心、重心、垂心在同一條直線上,后人稱這條直線為歐拉線.已知△ABC的頂點(diǎn)分別為,,,則△ABC的歐拉線方程為()A. B.C. D.5.復(fù)數(shù),則對(duì)應(yīng)的點(diǎn)所在的象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限6.已知直線l與拋物線交于不同的兩點(diǎn)A,B,O為坐標(biāo)原點(diǎn),若直線的斜率之積為,則直線l恒過(guò)定點(diǎn)()A. B.C. D.7.已知三角形三個(gè)頂點(diǎn)為、、,則邊上的高所在直線的方程為()A. B.C. D.8.已知數(shù)列滿足,其前項(xiàng)和為,,.若數(shù)列的前項(xiàng)和為,則滿足成立的的最小值為()A.10 B.11C.12 D.139.下列推理中屬于歸納推理且結(jié)論正確的是()A.由,求出,,,…,推斷:數(shù)列的前項(xiàng)和B.由滿足對(duì)都成立,推斷:為奇函數(shù)C.由半徑為的圓的面積,推斷單位圓的面積D.由,,,…,推斷:對(duì)一切,10.以軸為對(duì)稱軸,頂點(diǎn)為坐標(biāo)原點(diǎn),焦點(diǎn)到準(zhǔn)線的距離為4的拋物線方程是()A. B.C.或 D.或11.繞著它的一邊旋轉(zhuǎn)一周得到的幾何體可能是()A.圓臺(tái) B.圓臺(tái)或兩個(gè)圓錐的組合體C.圓錐或兩個(gè)圓錐的組合體 D.圓柱12.已知拋物線內(nèi)一點(diǎn),過(guò)點(diǎn)的直線交拋物線于,兩點(diǎn),且點(diǎn)為弦的中點(diǎn),則直線的方程為()A. B.C D.二、填空題:本題共4小題,每小題5分,共20分。13.記為等差數(shù)列{}的前n項(xiàng)和,若,,則=_________.14.已知雙曲線的右焦點(diǎn)為,過(guò)點(diǎn)作軸的垂線,在第一象限與雙曲線及其漸近線分別交于,兩點(diǎn).若,則雙曲線的離心率為_(kāi)__________.15.曲線在點(diǎn)處的切線方程為_(kāi)____________________.16.某地區(qū)有3個(gè)疫苗接種定點(diǎn)醫(yī)院,現(xiàn)有10名志愿者將被派往這3個(gè)醫(yī)院協(xié)助新冠疫苗接種工作,每個(gè)醫(yī)院至少需要2名至多需要4名志愿者,則不同的安排方法共有___________種.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù),(1)求曲線在點(diǎn)處的切線方程;(2)若對(duì)任意的,恒成立,求實(shí)數(shù)的取值范圍18.(12分)已知點(diǎn),(1)若過(guò)點(diǎn)P作的切線只有一條,求實(shí)數(shù)的值及切線方程;(2)過(guò)點(diǎn)P作斜率為1的直線l與相交于M,N兩點(diǎn),當(dāng)面積最大時(shí),求實(shí)數(shù)的值19.(12分)已知點(diǎn)A(1,2)在拋物線C∶上,過(guò)點(diǎn)A作兩條直線分別交拋物線于點(diǎn)D,E,直線AD,AE的斜率分別為kAD,kAE,若直線DE過(guò)點(diǎn)P(-1,-2)(1)求拋物線C的方程;(2)求直線AD,AE的斜率之積.20.(12分)已知?jiǎng)狱c(diǎn)M到點(diǎn)F(0,2)的距離,與點(diǎn)M到直線l:y=﹣2的距離相等.(1)求動(dòng)點(diǎn)M的軌跡方程;(2)若過(guò)點(diǎn)F且斜率為1的直線與動(dòng)點(diǎn)M的軌跡交于A,B兩點(diǎn),求線段AB的長(zhǎng)度.21.(12分)已知橢圓的一個(gè)頂點(diǎn)為,離心率為(1)求橢圓C的方程;(2)若直線l與橢圓C交于M、N兩點(diǎn),直線BM與直線BN的斜率之積為,證明直線l過(guò)定點(diǎn)并求出該定點(diǎn)坐標(biāo)22.(10分)設(shè)點(diǎn),動(dòng)圓P經(jīng)過(guò)點(diǎn)F且和直線相切,記動(dòng)圓的圓心P的軌跡為曲線W(1)求曲線W的方程;(2)直線與曲線W交于A、B兩點(diǎn),其中O為坐標(biāo)原點(diǎn),已知點(diǎn)T的坐標(biāo)為,記直線TA,TB的斜率分別為,,則是否為定值,若是求出,不是說(shuō)明理由
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】設(shè)出l1的方程為,與拋物線聯(lián)立后得到兩根之和,兩根之積,用弦長(zhǎng)公式表達(dá)出,同理表達(dá)出,利用基本不等式求出的最小值.【詳解】拋物線C:y2=4x的焦點(diǎn)F為,直線l1的方程為,則聯(lián)立后得到,設(shè),,,則,同理設(shè)可得:,因?yàn)閨k1·k2|=2,所以,當(dāng)且僅當(dāng),即或時(shí),等號(hào)成立,故選:B2、A【解析】計(jì)算拋物線的準(zhǔn)線,根據(jù)距離結(jié)合拋物線的定義得到答案.【詳解】拋物線的焦點(diǎn)為,準(zhǔn)線方程為,到軸的距離是4,故到準(zhǔn)線的距離是,故點(diǎn)到該拋物線焦點(diǎn)的距離是.故選:A.3、C【解析】利用等差數(shù)列的前n項(xiàng)和公式求解.【詳解】∵是等差數(shù)列,,∴,得,∴.故選:C.4、A【解析】求出重心坐標(biāo),求出AB邊上高和AC邊上高所在直線方程,聯(lián)立兩直線可得垂心坐標(biāo),即可求出歐拉線方程.【詳解】由題可知,△ABC的重心為,可得直線AB的斜率為,則AB邊上高所在的直線斜率為,則方程為,直線AC的斜率為,則AC邊上高所在的直線斜率為2,則方程為,聯(lián)立方程可得△ABC的垂心為,則直線GH斜率為,則可得直線GH方程為,故△ABC的歐拉線方程為.故選:A.5、C【解析】化簡(jiǎn)復(fù)數(shù),根據(jù)復(fù)數(shù)的幾何意義,即可求解.【詳解】由題意,復(fù)數(shù),所以復(fù)數(shù)對(duì)應(yīng)的點(diǎn)為位于第三象限.故選:C.6、A【解析】設(shè)出直線方程,聯(lián)立拋物線方程,得到,進(jìn)而得到的值,將直線的斜率之積為,用A,B點(diǎn)坐標(biāo)表示出來(lái),結(jié)合的值即可求得答案.【詳解】設(shè)直線方程為,聯(lián)立,整理得:,需滿足,即,則,由,得:,所以,即,故,所以直線l為:,當(dāng)時(shí),,即直線l恒過(guò)定點(diǎn),故選:A.7、A【解析】求出直線的斜率,可求得邊上的高所在直線的斜率,利用點(diǎn)斜式可得出所求直線的方程.【詳解】直線的斜率為,故邊上的高所在直線的斜率為,因此,邊上的高所在直線的方程為.故選:A.8、A【解析】根據(jù)題意和對(duì)數(shù)的運(yùn)算公式可證得為以2為首項(xiàng),2為公比的等比數(shù)列,求出,進(jìn)而得到,利用裂項(xiàng)相消法求得,再解不等式即可.【詳解】由,又,所以數(shù)列是以2為首項(xiàng),2為公比的等比數(shù)列,故,則,所以,由,得,即,有,又,所以,即n的最小值為10.故選:A9、A【解析】根據(jù)歸納推理是由特殊到一般,推導(dǎo)結(jié)論可得結(jié)果.【詳解】對(duì)于A,由,求出,,,…,推斷:數(shù)列的前項(xiàng)和,是由特殊推導(dǎo)出一般性的結(jié)論,且,故A正確;B和C屬于演繹推理,故不正確;對(duì)于D,屬于歸納推理,但時(shí),結(jié)論不正確,故D不正確.故選:A.10、C【解析】根據(jù)拋物線的概念以及幾何性質(zhì)即可求拋物線的標(biāo)準(zhǔn)方程.【詳解】依題意設(shè)拋物線方程為因?yàn)榻裹c(diǎn)到準(zhǔn)線的距離為4,所以,所以,所以拋物線方程或故選:C11、C【解析】討論是按直角邊旋轉(zhuǎn)還是按斜邊旋轉(zhuǎn)【詳解】按直角邊選擇可得下圖圓錐:如果按直角邊旋轉(zhuǎn)可得下圖的兩個(gè)圓錐的組合體:故選:C12、B【解析】利用點(diǎn)差法求出直線斜率,即可得出直線方程.【詳解】設(shè),則,兩式相減得,即,則直線方程為,即.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、18【解析】根據(jù)等差數(shù)列通項(xiàng)和前n項(xiàng)和公式即可得到結(jié)果.【詳解】設(shè)等差數(shù)列的公差為,由,得,解得,所以故答案為:1814、【解析】按題意求得,兩點(diǎn)坐標(biāo),以代數(shù)式表達(dá)出條件,即可得到關(guān)于的關(guān)系式,進(jìn)而解得雙曲線的離心率.【詳解】雙曲線的右焦點(diǎn)為,其漸近線為,垂線方程為,則,,,由,得,即即,則,離心率故答案為:15、【解析】首先判定點(diǎn)在曲線上,然后利用導(dǎo)數(shù)的幾何意義求得答案.【詳解】由題意可知點(diǎn)在曲線上,而,故曲線在點(diǎn)處的切線斜率為,所以切線方程:,即,故答案為:16、22050【解析】先分組,再排列,注意部分平均分組問(wèn)題,需要除以平均組數(shù)的全排列.【詳解】根據(jù)題意,這10名志愿者的安排方法共有兩類:第一類是2,4,4,第二類是3,3,4.故不同的安排方法共有種.故答案為:22050三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解析】(1)求出函數(shù)的導(dǎo)數(shù),計(jì)算,,求出切線方程即可;(2)問(wèn)題轉(zhuǎn)化為,利用導(dǎo)函數(shù)求出的最大值,求出的范圍即可.【小問(wèn)1詳解】因?yàn)?,所以,則切線的斜率為,又因?yàn)?,則切點(diǎn)為,所以曲線在點(diǎn)處的切線方程為,即【小問(wèn)2詳解】當(dāng)時(shí),令得,列表得x001↘極小值↗所以當(dāng)時(shí),的最大值為由題意知,故,解之得,所以實(shí)數(shù)的取值范圍為.18、(1);當(dāng)時(shí),切線方程為;當(dāng)時(shí),切線方程為;(2)或【解析】(1)根據(jù)題意可知P在圓上,據(jù)此即可求t和切線方程;(2)的面積,則當(dāng)面積最大時(shí),.即,據(jù)此即可求出圓心O到直線l的距離,即可求出t的數(shù)值.【小問(wèn)1詳解】由題意得點(diǎn)在上,∴,,①當(dāng)時(shí),切點(diǎn),直線OP的斜率,切線斜率,切線方程為,即②當(dāng)時(shí),切點(diǎn),直線OP的斜率,切線斜率,切線方程,即【小問(wèn)2詳解】∵的面積,則當(dāng)面積最大時(shí),.即,則圓心O到直線l距離又直線,即,則,解之得或注:亦可設(shè)圓心O到直線l的距離為d,則的面積,當(dāng)且僅當(dāng),即時(shí)取等號(hào)(下同)19、(1)(2)【解析】(1)代入點(diǎn)即可求得拋物線方程;(2)聯(lián)立方程后利用韋達(dá)定理求出,,,,然后代入即可求得斜率的積.【小問(wèn)1詳解】解:點(diǎn)A(1,2)在拋物線C∶上故【小問(wèn)2詳解】設(shè)直線方程為:聯(lián)立方程,整理得:由題意及韋達(dá)定理可得:,20、(1)x2=8y(2)16【解析】小問(wèn)1:由拋物線的定義可求得動(dòng)點(diǎn)M的軌跡方程;小問(wèn)2:可知直線AB的方程為y=x+2,設(shè)點(diǎn)A(x1,y1)、B(x2,y2),將直線AB的方程與拋物線的方程聯(lián)立,求出y1+y2的值,利用拋物線的定義可求得|AB|的值.【小問(wèn)1詳解】由題意點(diǎn)M的軌跡是以F為焦點(diǎn),直線l為準(zhǔn)線的拋物線,所以,則p=4,所以動(dòng)點(diǎn)M的軌跡方程是x2=8y;【小問(wèn)2詳解】由已知直線AB方程是y=x+2,設(shè)A(x1,y1)、B(x2,y2),由得x2﹣8x﹣16=0,,所以x1+x2=8,則y1+y2=x1+x2+4=12,故|AB|=y(tǒng)1+y2+4=1621、(1);(2)答案見(jiàn)解析,直線過(guò)定點(diǎn).【解析】(1)首先根據(jù)頂點(diǎn)為得到,再根據(jù)離心率為得到,從而得到橢圓C的方程.(2)設(shè),,,與橢圓聯(lián)立得到,利用直線BM與直線BN的斜率之積為和根系關(guān)系得到,從而得到直線恒過(guò)的定點(diǎn).【詳解】(1)一個(gè)頂點(diǎn)為,故,又,即,所以故橢圓的方程為(2)若直線l的斜率不存在,設(shè),,此時(shí),與題設(shè)矛盾,故直線l斜率必存在設(shè),,,聯(lián)立得,∴,∵,即∴,化為,解得或(舍去),即直線過(guò)定點(diǎn)【點(diǎn)睛】方法點(diǎn)睛:定點(diǎn)問(wèn)題,一般從三個(gè)方法把握:(1)從特殊情況開(kāi)始,求出定點(diǎn),再證明定點(diǎn)、定值與變量無(wú)關(guān);(2)直接推理,計(jì)算,在整個(gè)過(guò)程找到參數(shù)之間的關(guān)系,代入直線,得到定點(diǎn).22、(1);
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 【正版授權(quán)】 ISO 19338:2025 EN Performance requirements for standards on concrete structures
- 【正版授權(quán)】 ISO/IEC 20153:2025 EN Information technology - OASIS Common Security Advisory Framework (CSAF) v2.0 Specification
- 【正版授權(quán)】 ISO 16089:2025 EN Machine tools - Safety - Stationary grinding machines
- 【正版授權(quán)】 IEC 60884-2-7:2025 EXV-RLV EN Plugs and socket-outlets for household and similar purposes - Part 2-7: Particular requirements for cord extension sets
- 【正版授權(quán)】 IEC 60287-1-2:1993 EN-D Electric cables - Calculation of the current rating - Part 1: Current rating equations (100 % load factor) and calculations of losses - Section 2: Sh
- 【正版授權(quán)】 IEC 60071-1:2006 FR-D Insulation co-ordination - Part 1: Definitions,principles and rules
- 壓力性尿失禁循證護(hù)理
- 2025年物業(yè)圣誕節(jié)活動(dòng)策劃方案
- 高二班主任2025年下學(xué)期工作方案
- 新人教版部編本2025年秋五班級(jí)上冊(cè)語(yǔ)文教學(xué)工作方案附教學(xué)進(jìn)度支配
- 2022中國(guó)大學(xué)慕課批判性思維南林大答案
- 衛(wèi)生檢驗(yàn)習(xí)題庫(kù)含參考答案
- 《建筑深基坑工程施工安全技術(shù)規(guī)范》JGJ311-2013
- 護(hù)理人文關(guān)懷培訓(xùn)課件PPT
- 房屋市政工程施工現(xiàn)場(chǎng)安全風(fēng)險(xiǎn)分級(jí)管控與防范措施清單
- 腹腔壓力監(jiān)測(cè)演示文稿
- 2023學(xué)年完整公開(kāi)課版Unit4HobbiesLesson2
- 帶電作業(yè)屏蔽服安全技術(shù)標(biāo)準(zhǔn)
- 護(hù)理-人力資源案例分享課件
- 集成電路芯片測(cè)試技術(shù)PPT全套完整教學(xué)課件
- Windchill培訓(xùn)Creo數(shù)據(jù)管理培訓(xùn)
評(píng)論
0/150
提交評(píng)論