(1.9.6)-6.5 Bending of Unsymmetric Beams材料力學(xué)材料力學(xué)_第1頁
(1.9.6)-6.5 Bending of Unsymmetric Beams材料力學(xué)材料力學(xué)_第2頁
(1.9.6)-6.5 Bending of Unsymmetric Beams材料力學(xué)材料力學(xué)_第3頁
(1.9.6)-6.5 Bending of Unsymmetric Beams材料力學(xué)材料力學(xué)_第4頁
(1.9.6)-6.5 Bending of Unsymmetric Beams材料力學(xué)材料力學(xué)_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

BendingofUnsymmetricBeamsChapter6StressesinBeams(AdvancedTopics)UnsymmetriccompositebeammadeupfromchannelsectionandoldwoodbeamUnsymmetricBeamsUnsymmetriccrosssectionofananti-collisionbeamInengineeringstructures,beamsmayhaveunsymmetriccrosssections,forexample,*thecrosssectionofananti-collisionbeam,and*anunsymmetriccompositebeammadeupfromchannelsectionandoldwoodbeam.Inthissection,onlyunsymmetricbeamsinpurebendingareconsidered,andthestressesandthepositionoftheneutralaxisinbeamsareofinterest.Inlatersections,theeffectsoflateralloadsareinvestigated.1.NeutralAxisAssumethatthezaxisistheneutralaxis.①TheresultantforceinxaxisEandκyareconstantsThezaxis(theneutralaxis)mustpassthroughthecentroid.TheoriginoftheyandzaxesforanunsymmetricbeammustbeplacedatthecentroidC.Tofindthestressesandnetrualaxis,atthisstageoftheanalysis,thereisnodirectwayofdeterminingthesequantities.Therefore,anindirectapproachmustbeused.Takethis*unsymmetricbeamforexamplewithabendingmomentMactingattheend.First*constructtwoperpendicularaxes,yandzaxesatanarbitrarilyselectedpointC.*Assumethatthez

axisistheneutralaxis.Consequently,thebeamdeflectsinthex-yplane.Sincethebeamisinpurebending,theresultantforceinthexaxisovertheentirecrosssectionmustbezero*.where*σxrepresentsthenormalstressactingonanelementofareadAlocatedatdistanceyfromtheneutralaxis,Eisthemodulusofelasticity

andkyisthecurvature.Atanygivencrosssection,*Eandkyareconstants,therefore*.Thisequationshowsthat*thezaxispassesthroughthecentroidCofthecrosssection.Whenassumethattheyaxisisthe

neutralaxis,sameconclusioncanbeobtaiend.Thatisneutralaxismustpassthroughthecentroid.Itfollowsthat*theoriginoftheyandzaxesforanunsymmetricbeammustbeplacedatthecentroidCofthecrosssection.Whenanunsymmetricbeamisinpurebending,theplaneinwhichthebendingmomentactsisperpendiculartotheneutralsurface,onlyiftheyandzaxesareprincipalcentroidalaxes

ofthecrosssectionandthebendingmomentactsinoneofthetwoprincipalplanes(x-yplaneorx-zplane).②Theresultantmomentofthestressesσx

Assumethatthezaxisistheneutralaxis.Andwhendiscussingthemomentresultantofthestressesσx,itleadstothefollowingimportantconclusion*:Whenanunsymmetricbeamisinpurebending,theplaneinwhichthebendingmomentactsisperpendiculartotheneutralsurfaceonlyiftheyandzaxesareprincipalcentroidalaxesofthecrosssectionandthebendingmomentactsinoneofthetwoprincipalplanes,thex-yplaneorthex-zplane.Thisconclusionleadstoadirectmethodforfindingthestressesinanunsymmetricbeamsubjectedtoabendingmomentactinginanarbitrarydirection.2.Procedureforanalyzinganunsymmetricbeam②ResolvethebendingmomentMintocomponents③Thesuperpositionofthebendingstresses①LocatethecentroidCandconstructasetofprincipalaxesTheanglebetweentheneutralaxis

andthezaxis:Nowlet’slookatageneralprocedureforanalyzinganunsymmetricbeamsubjectedtoanybendingmomentM.*FirstlocatethecentroidCofthecrosssectionandconstructingasetofprincipalaxesatthecentroidC,theyandzaxesinthefigure.Next,*resolvethebendingmomentMintocomponentsMyandMz.Astheusualformulasforpurebendingcanbeappliedhere,thestressesarecomputedusingthemomentsMyandMzactingseparately.*Superposingthebendingstresses,theresultantstressatanypointisgiven.Also,*theequationoftheneutralaxisnnisobtainedbysettingσxequaltozeroandsimplifying.Samehere,thisequationshowsingeneraltheanglesβandθarenotequal;hencetheneutralaxisisgenerallynotperpendiculartotheplaneinwhichtheappliedcoupleMacts.Theonlyexceptionsarethethreespecialcasesdescribedintheprecedingsection.ThenormalstressatpointA:3.Alternateprocedureforanalyzinganunsymmetricbeam-ageneralizedbendingtheory②ResolvethebendingmomentMintocomponents③Thegeneralizedflexureformula①LocatethecentroidCandconstructasetofnonprincipalaxesEquilibriumrelations:Forsuchunsymmetricbeams,likeZ-section,whentheorientationoftheprincipalaxescannotbeobtainedbyinspectionorfromtables,itmaybeeasiertoworkwiththenonprincipalcentroidalaxesthatarealignedwiththesidesofthecrosssection.Thatisanalternateprocedureforanalyzinganunsymmetricbeam,whichwillgiveageneralizedbendingtheory.*Consideranunsymmetriccrosssection*withyandzaxeshavingtheiroriginatthecentroid,buttheyarenotprincipalaxes.*ThebendingmomentMresolvedintocomponentsMyandMz,andbendingofthebeamoccursinboththex-yandx-zplanes,neitherofwhichisaprincipalplane.*Togetthegeneralizedflexuralformulaforcalculatingthenormalstresssσxatanypointinanunsymmetricbeam,*thenormalstressatanypointAis.thecurvatureskyandkzareunknown,whicharefoundfrom*equilibriumrelationships,theresultant(axial)forceequalstozero,*Myequalstothemomentstressresultantabouttheyaxis,and*Mzequalstothemomentstressresultantaboutthezaxis.Thefirstequilibriumequationissatisfiedautomaticallybecausetheoriginoftheaxesisatthecentroidofthecrosssection.Solvethelasttwoequationssimultaneouslytoobtaintheexpressionsforcurvaturesintermsofthebendingmoments.Theorientationoftheneutralaxisnn:③ThegeneralizedflexureformulaThensubstitutecurvatureskyandkzessionsintotheexpressionofthenormalstressσx*.Thisisthegeneralizedflexureformulaforanunsymmetricbeamactedonbymomentsaboutperpendicularcentroidalaxesthatarenotnecessarilyprincipalaxes.Theorientationoftheneutralaxisnnisobtainedbyequatingσxtozerotofindanexpressionfor

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論