新高考數(shù)學二輪復習培優(yōu)講義05 各類基本初等函數(shù)(二次函數(shù)、指對冪函數(shù)等)(含解析)_第1頁
新高考數(shù)學二輪復習培優(yōu)講義05 各類基本初等函數(shù)(二次函數(shù)、指對冪函數(shù)等)(含解析)_第2頁
新高考數(shù)學二輪復習培優(yōu)講義05 各類基本初等函數(shù)(二次函數(shù)、指對冪函數(shù)等)(含解析)_第3頁
新高考數(shù)學二輪復習培優(yōu)講義05 各類基本初等函數(shù)(二次函數(shù)、指對冪函數(shù)等)(含解析)_第4頁
新高考數(shù)學二輪復習培優(yōu)講義05 各類基本初等函數(shù)(二次函數(shù)、指對冪函數(shù)等)(含解析)_第5頁
已閱讀5頁,還剩32頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

講義05講:各類基本初等函數(shù)【考點講義】1.二次函數(shù)的圖象和性質(zhì)解析式f(x)=ax2+bx+c(a>0)f(x)=ax2+bx+c(a<0)圖象定義域RR值域eq\b\lc\[\rc\)(\a\vs4\al\co1(\f(4ac-b2,4a),+∞))eq\b\lc\(\rc\](\a\vs4\al\co1(-∞,\f(4ac-b2,4a)))單調(diào)性在x∈eq\b\lc\(\rc\](\a\vs4\al\co1(-∞,-\f(b,2a)))上單調(diào)遞減;在x∈eq\b\lc\[\rc\)(\a\vs4\al\co1(-\f(b,2a),+∞))上單調(diào)遞增在x∈eq\b\lc\(\rc\](\a\vs4\al\co1(-∞,-\f(b,2a)))上單調(diào)遞增;在x∈eq\b\lc\[\rc\)(\a\vs4\al\co1(-\f(b,2a),+∞))上單調(diào)遞減對稱性函數(shù)的圖象關于直線x=-eq\f(b,2a)對稱2.冪函數(shù)(1)冪函數(shù)的定義一般地,形如y=xα的函數(shù)稱為冪函數(shù),其中x是自變量,α是常數(shù).(2)常見的五種冪函數(shù)的圖象和性質(zhì)比較函數(shù)y=xy=x2y=x3y=SKIPIF1<0y=x-1圖象性質(zhì)定義域RRR{x|x≥0}{x|x≠0}值域R{y|y≥0}R{y|y≥0}{y|y≠0}奇偶性奇函數(shù)偶函數(shù)奇函數(shù)非奇非偶函數(shù)奇函數(shù)單調(diào)性在R上單調(diào)遞增在(-∞,0]上單調(diào)遞減;在(0,+∞)上單調(diào)遞增在R上單調(diào)遞增在[0,+∞)上單調(diào)遞增在(-∞,0)和(0,+∞)上單調(diào)遞減公共點(1,1)3.一般冪函數(shù)的圖象特征(1)所有的冪函數(shù)在(0,+∞)上都有定義,并且圖象都過點(1,1).(2)當α>0時,冪函數(shù)的圖象通過原點,并且在區(qū)間[0,+∞)上是增函數(shù).特別地,當α>1時,冪函數(shù)的圖象下凸;當0<α<1時,冪函數(shù)的圖象上凸.(3)當α<0時,冪函數(shù)的圖象在區(qū)間(0,+∞)上是減函數(shù).(4)冪指數(shù)互為倒數(shù)的冪函數(shù)在第一象限內(nèi)的圖象關于直線y=x對稱.(5)在第一象限作直線x=a(a>1),它同各冪函數(shù)圖象相交,按交點從下到上的順序,冪指數(shù)按從小到大的順序排列.4.分數(shù)指數(shù)冪(1)SKIPIF1<0=eq\r(n,am)(a>0,m,n∈N*,且n>1);SKIPIF1<0=SKIPIF1<0(a>0,m,n∈N*,且n>1);0的正分數(shù)指數(shù)冪等于0;0的負分數(shù)指數(shù)冪沒有意義.(2)有理數(shù)指數(shù)冪的運算性質(zhì)(a>0,b>0,r,s∈R)aras=ar+s;SKIPIF1<0;(ar)s=ars;(ab)r=arbr.5.指數(shù)函數(shù)的圖象與性質(zhì)y=axa>10<a<1圖象定義域(1)R值域(2)(0,+∞)性質(zhì)(3)過定點(0,1)(4)當x>0時,y>1;當x<0時,0<y<1(5)當x>0時,0<y<1;當x<0時,y>1(6)在(-∞,+∞)上是增函數(shù)(7)在(-∞,+∞)上是減函數(shù)6.對數(shù)的概念一般地,如果ax=N(a>0,且a≠1),那么數(shù)x叫做以a為底N的對數(shù),記作x=logaN,其中a叫做對數(shù)的底數(shù),N叫做真數(shù).以10為底的對數(shù)叫做常用對數(shù),記作lgN.以e為底的對數(shù)叫做自然對數(shù),記作lnN.(e=2.71828…)7.對數(shù)的性質(zhì)與運算性質(zhì)(1)對數(shù)的性質(zhì):=1\*GB3①1的對數(shù)為零:loga1=0.=2\*GB3②底的對數(shù)為1:logaa=1.=3\*GB3③零和負數(shù)沒有對數(shù).=4\*GB3④SKIPIF1<0=N(a>0,且a≠1,N>0).(2)對數(shù)的運算性質(zhì)如果a>0,且a≠1,b>0,M>0,N>0,那么:①loga(MN)=logaM+logaN;②logaeq\f(M,N)=logaM-logaN;③SKIPIF1<0=eq\f(m,n)logab.(3)換底公式:logab=eq\f(logcb,logca)(a>0,且a≠1,b>0,c>0,且c≠1).重要推論:=1\*GB3①logaN=eq\f(1,logNa)(N>0,且N≠1;a>0,且a≠1);=2\*GB3②logab·logbc·logcd=logad(a>0,b>0,c>0,d>0,且a≠1,b≠1,c≠1).8.對數(shù)函數(shù)的圖象與性質(zhì)y=logaxa>10<a<1圖象定義域(0,+∞)值域R性質(zhì)過定點(1,0),即x=1時,y=0當x>1時,y>0;當0<x<1時,y<0當x>1時,y<0;當0<x<1時,y>0在(0,+∞)上是增函數(shù)在(0,+∞)上是減函數(shù)9.反函數(shù)指數(shù)函數(shù)y=ax(a>0且a≠1)與對數(shù)函數(shù)y=logax(a>0且a≠1)互為反函數(shù),它們的圖象關于直線y=x對稱.【方法技巧】1.解決二次函數(shù)圖象與性質(zhì)問題時要注意:(1)拋物線的開口方向,對稱軸位置,定義區(qū)間三者相互制約,要注意分類討論.(2)要注意數(shù)形結(jié)合思想的應用,尤其是給定區(qū)間上的二次函數(shù)最值問題,先“定性”(作草圖),再“定量”(看圖求解).(3)二次函數(shù)在閉區(qū)間上的最值主要有三種類型:軸定區(qū)間定、軸動區(qū)間定、軸定區(qū)間動.無論哪種類型,解題的關鍵都是圖象的對稱軸與區(qū)間的位置關系,當含有參數(shù)時,要依據(jù)圖象的對稱軸與區(qū)間的位置關系進行分類討論.2.冪函數(shù):(1)冪函數(shù)的形式是y=xα(α∈R),其中只有一個參數(shù)α,因此只需一個條件即可確定其解析式.(2)在區(qū)間(0,1)上,冪函數(shù)中指數(shù)越大,函數(shù)圖象越靠近x軸(簡記為“指大圖低”),在區(qū)間(1,+∞)上,冪函數(shù)中指數(shù)越大,函數(shù)圖象越遠離x軸.(3)對于冪函數(shù)圖象的掌握只要抓住在第一象限內(nèi)三條線分第一象限為六個區(qū)域,即x=1,y=1,y=x所分區(qū)域.根據(jù)α<0,0<α<1,α=1,α>1的取值確定位置后,其余象限部分由奇偶性決定.(4)在比較冪值的大小時,必須結(jié)合冪值的特點,選擇適當?shù)暮瘮?shù),借助其單調(diào)性進行比較,準確掌握各個冪函數(shù)的圖象和性質(zhì)是解題的關鍵.3.指數(shù)函數(shù):(1)利用指數(shù)函數(shù)的函數(shù)性質(zhì)比較大小或解方程、不等式,最重要的是“同底”原則,比較大小還可以借助中間量;(2)求解與指數(shù)函數(shù)有關的復合函數(shù)問題,要明確復合函數(shù)的構(gòu)成,涉及值域、單調(diào)區(qū)間、最值等問題時,都要借助“同增異減”這一性質(zhì)分析判斷.4.對數(shù)運算的一般思路(1)拆:首先利用冪的運算把底數(shù)或真數(shù)進行變形,化成分數(shù)指數(shù)冪的形式,使冪的底數(shù)最簡,然后利用對數(shù)運算性質(zhì)化簡合并.(2)合:將對數(shù)式化為同底數(shù)的和、差、倍數(shù)運算,然后逆用對數(shù)的運算性質(zhì),轉(zhuǎn)化為同底對數(shù)真數(shù)的積、商、冪的運算.5.對數(shù)函數(shù):(1)比較指數(shù)式和對數(shù)式的大小,可以利用函數(shù)的單調(diào)性,引入中間量;有時也可用數(shù)形結(jié)合的方法.(2)解題時要根據(jù)實際情況來構(gòu)造相應的函數(shù),利用函數(shù)單調(diào)性進行比較,如果指數(shù)相同,而底數(shù)不同則構(gòu)造冪函數(shù),若底數(shù)相同而指數(shù)不同則構(gòu)造指數(shù)函數(shù),若引入中間量,一般選0或1.(3)利用對數(shù)函數(shù)的性質(zhì),求與對數(shù)函數(shù)有關的函數(shù)值域和復合函數(shù)的單調(diào)性問題,必須弄清三方面的問題:一是定義域,所有問題都必須在定義域內(nèi)討論;二是底數(shù)與1的大小關系;三是復合函數(shù)的構(gòu)成,即它是由哪些基本初等函數(shù)復合而成的.另外,解題時要注意數(shù)形結(jié)合、分類討論、轉(zhuǎn)化與化歸思想的應用.【核心題型】題型一:二次函數(shù)的圖像和性質(zhì)命題點1二次函數(shù)的單調(diào)性1.(2021·重慶市實驗中學高三階段練習)已知函數(shù)SKIPIF1<0,若函數(shù)SKIPIF1<0在R上為減函數(shù),則實數(shù)a的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】利用二次函數(shù)、指數(shù)函數(shù)的單調(diào)性以及函數(shù)單調(diào)性的定義,建立關于a的不等式組,解不等式組即可得答案.【詳解】解:因為函數(shù)SKIPIF1<0在R上為減函數(shù),所以SKIPIF1<0,解得SKIPIF1<0,所以實數(shù)a的取值范圍為SKIPIF1<0,故選:B.2.(2022·天津·耀華中學高三階段練習)已知函數(shù)SKIPIF1<0,則SKIPIF1<0的增區(qū)間為(

)A.(–∞,–1) B.(–3,–1)C.[–1,+∞) D.[–1,1)【答案】B【分析】先求出函數(shù)的定義域,然后由復合函數(shù)的單調(diào)性可得出答案.【詳解】由SKIPIF1<0,得SKIPIF1<0,當SKIPIF1<0時,函數(shù)SKIPIF1<0單調(diào)遞增,所以函數(shù)SKIPIF1<0單調(diào)遞增;當SKIPIF1<0時,函數(shù)SKIPIF1<0單調(diào)遞減,所以所以函數(shù)SKIPIF1<0單調(diào)遞減,故選:B.3.(2015·四川·高考真題(理))如果函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,則mn的最大值為()A.16 B.18 C.25 D.SKIPIF1<0【答案】B【詳解】SKIPIF1<0時,拋物線的對稱軸為SKIPIF1<0.據(jù)題意,當SKIPIF1<0時,SKIPIF1<0即SKIPIF1<0.SKIPIF1<0.由SKIPIF1<0且SKIPIF1<0得SKIPIF1<0.當SKIPIF1<0時,拋物線開口向下,據(jù)題意得,SKIPIF1<0即SKIPIF1<0.SKIPIF1<0.由SKIPIF1<0且SKIPIF1<0得SKIPIF1<0,故應舍去.要使得SKIPIF1<0取得最大值,應有SKIPIF1<0SKIPIF1<0.所以SKIPIF1<0,所以最大值為18.選B..考點:函數(shù)與不等式的綜合應用.命題點2二次函數(shù)的值域、最值4.(2023·全國·高三專題練習)若函數(shù)SKIPIF1<0,則函數(shù)SKIPIF1<0的最小值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】先利用配湊法求出SKIPIF1<0的解析式,則可求出SKIPIF1<0的解析式,從而可求出函數(shù)的最小值【詳解】因為SKIPIF1<0,所以SKIPIF1<0.從而SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0取得最小值,且最小值為SKIPIF1<0.故選:D5.(2022·江蘇·阜寧縣東溝中學高三階段練習)已知直線SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】由兩直線垂直得到SKIPIF1<0,再代入消元利用二次函數(shù)的性質(zhì)求解.【詳解】解:SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,二次函數(shù)的拋物線的對稱軸為SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0取最小值SKIPIF1<0.故選:A.6.(2022·安徽·合肥雙鳳高級中學模擬預測(文))已知圓SKIPIF1<0與圓SKIPIF1<0的公共弦所在直線恒過點SKIPIF1<0,且點SKIPIF1<0在直線SKIPIF1<0上,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】將兩圓的方程相減可得公共弦方程,從而求得定點SKIPIF1<0,利用點在直線上可得SKIPIF1<0,再代入SKIPIF1<0消元,轉(zhuǎn)化成一元二次函數(shù)的取值范圍;【詳解】解:由圓SKIPIF1<0,圓SKIPIF1<0,得圓SKIPIF1<0與圓SKIPIF1<0的公共弦所在直線方程為SKIPIF1<0,求得定點SKIPIF1<0,又SKIPIF1<0在直線SKIPIF1<0上,SKIPIF1<0,即SKIPIF1<0.∴SKIPIF1<0,∴SKIPIF1<0的取值范圍是SKIPIF1<0.故選:A.【點睛】本題考查圓的公共弦方程求解、一元二次函數(shù)的最值,考查轉(zhuǎn)化與化歸思想的運用.命題點3二次函數(shù)的恒(能)成立問題7.(2019·云南師大附中高三階段練習(文))若關于SKIPIF1<0的不等式SKIPIF1<0的解集為實數(shù)集SKIPIF1<0,則實數(shù)SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】A【分析】對二次項系數(shù)SKIPIF1<0分成兩種情況討論,即SKIPIF1<0,SKIPIF1<0,結(jié)合二次函數(shù)的圖象,即可得答案.【詳解】當SKIPIF1<0時,不等式為SKIPIF1<0,恒成立,滿足題意;當SKIPIF1<0時,則SKIPIF1<0,解得SKIPIF1<0,綜上,實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故選:A.【點睛】本題考查一元二次不等式的恒成立問題,考查函數(shù)與方程思想、分類討論思想,考查邏輯推理能力和運算求解能力,求解時注意判別式的應用.8.(2021·江西·高三階段練習(理))已知f(x)=x2,g(x)=SKIPIF1<0-m,若對任意x1∈[0,2],存在x2∈[1,2],使得f(x1)≥g(x2),則實數(shù)m的取值范圍是________.【答案】SKIPIF1<0【分析】由題意,問題等價轉(zhuǎn)化為f(x)的最小值不小于g(x)的最小值,分別求出最值,列出不等式求解即可.【詳解】由題意f(x)的最小值不小于g(x)的最小值,所以f(0)≥g(2),即SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0【點睛】本題主要考查函數(shù)的最值問題,屬于簡單題.9.(2021·上海市吳淞中學高三階段練習)已知函數(shù)SKIPIF1<0,當SKIPIF1<0時,都有SKIPIF1<0恒成立,則SKIPIF1<0_________.【答案】SKIPIF1<0【分析】根據(jù)題意,可得SKIPIF1<0,代入方程,可求得n的值,結(jié)合SKIPIF1<0性質(zhì),可得圖象的對稱軸為直線x=0,即可得m值,進而可得SKIPIF1<0的方程,代入數(shù)據(jù),即可得答案.【詳解】因為當SKIPIF1<0時,都有SKIPIF1<0恒成立,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,由SKIPIF1<0圖象可知,要滿足題意,則圖象的對稱軸為直線x=0,所以SKIPIF1<0,解得m=2,所以SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0題型二:冪函數(shù)的圖像和性質(zhì)10.(2022·北京二十中高一階段練習)在同一坐標系內(nèi),函數(shù)SKIPIF1<0和SKIPIF1<0的圖象可能是()A. B. C. D.【答案】B【分析】根據(jù)冪函數(shù)的圖象與性質(zhì),分SKIPIF1<0和SKIPIF1<0討論,利用排除法,即可求解,得到答案.【詳解】由題意,若SKIPIF1<0時,函數(shù)SKIPIF1<0在SKIPIF1<0遞增,此時SKIPIF1<0遞增,排除D;縱軸上截距為正數(shù),排除C,即SKIPIF1<0時,不合題意;若SKIPIF1<0時,函數(shù)SKIPIF1<0在SKIPIF1<0遞減,又由SKIPIF1<0遞減可排除A,故選B.【點睛】本題主要考查了冪函數(shù)的圖象與性質(zhì)的應用,其中解答中熟記冪函數(shù)的圖象與性質(zhì)是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.11.(2022·江蘇·啟東中學高三階段練習)已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】利用冪函數(shù)的單調(diào)性可得出SKIPIF1<0、SKIPIF1<0的大小關系,利用指數(shù)函數(shù)的單調(diào)性可得出SKIPIF1<0、SKIPIF1<0的大小關系,構(gòu)造函數(shù)SKIPIF1<0,利用函數(shù)SKIPIF1<0在SKIPIF1<0上的單調(diào)性可得出SKIPIF1<0、SKIPIF1<0的大小關系,即可得出結(jié)論.【詳解】因為SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0,則SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,故函數(shù)SKIPIF1<0在SKIPIF1<0上為增函數(shù),因為SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0,因此SKIPIF1<0.故選:B.12.(2021·湖南·長沙一中高三階段練習)已知函數(shù)SKIPIF1<0,若當SKIPIF1<0時,SKIPIF1<0恒成立,則實數(shù)a的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】首先判斷SKIPIF1<0的單調(diào)性和奇偶性,由此化簡不等式SKIPIF1<0,分離常數(shù)SKIPIF1<0,結(jié)合二次函數(shù)的性質(zhì)求得SKIPIF1<0的取值范圍.【詳解】由題意,SKIPIF1<0,即SKIPIF1<0為奇函數(shù),同時也為增函數(shù),∵SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0恒成立,SKIPIF1<0,若不等式恒成立,只需SKIPIF1<0,令SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.故選:C題型三:指數(shù)函數(shù)的性質(zhì)及應用13.(2022·寧夏六盤山高級中學高三階段練習(理))函數(shù)SKIPIF1<0的大致圖象為(

)A. B.C. D.【答案】D【分析】確定奇偶性,排除兩個選項,然后再由函數(shù)值的變化趨勢排除一個選項,得正確選項.【詳解】由SKIPIF1<0可知SKIPIF1<0是偶函數(shù),排除A,B;當SKIPIF1<0時,SKIPIF1<0,選項C錯誤.故選:D【點睛】思路點睛:函數(shù)圖象的辨識可從以下方面入手:(1)從函數(shù)的定義域,判斷圖象的左右位置;從函數(shù)的值域,判斷圖象的上下位置.(2)從函數(shù)的單調(diào)性,判斷圖象的變化趨勢;(3)從函數(shù)的奇偶性,判斷圖象的對稱性;(4)從函數(shù)的特征點,排除不合要求的圖象.14.(2022·安徽·安慶市第九中學高三階段練習)已知函數(shù)SKIPIF1<0,滿足對任意的實數(shù)SKIPIF1<0,都有SKIPIF1<0成立,則實數(shù)SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】題目考察分段函數(shù)單調(diào)遞減的問題,要保證每一段都是單調(diào)遞減的,且在銜接處也單調(diào)遞減即可【詳解】由SKIPIF1<0可得:函數(shù)SKIPIF1<0在定義域內(nèi)為減函數(shù),當SKIPIF1<0時,SKIPIF1<0為減函數(shù),則SKIPIF1<0;當SKIPIF1<0時,根據(jù)指數(shù)函數(shù)的性質(zhì)可知,SKIPIF1<0為減函數(shù),若SKIPIF1<0在R上為減函數(shù),還需要SKIPIF1<0,解得:SKIPIF1<0,綜上可得,SKIPIF1<0的取值范圍為SKIPIF1<0故選:D15.(2023·全國·高三專題練習)已知函數(shù)SKIPIF1<0,若方程SKIPIF1<0有解,則實數(shù)SKIPIF1<0的取值范圍是_________.【答案】SKIPIF1<0【分析】換元后利用參變分離,最后用基本不等式進行求解.【詳解】由題意得:SKIPIF1<0有解令SKIPIF1<0SKIPIF1<0有解,即SKIPIF1<0有解,顯然SKIPIF1<0無意義SKIPIF1<0SKIPIF1<0,當且僅當SKIPIF1<0,即SKIPIF1<0時取等,SKIPIF1<0故答案為:SKIPIF1<0.題型四:對數(shù)函數(shù)的性質(zhì)及應用16.(2010·全國·高三階段練習(理))函數(shù)SKIPIF1<0的值域是(

).A.R B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】先求出函數(shù)的定義域,然后判定復合函數(shù)的單調(diào)性,結(jié)合單調(diào)性求出函數(shù)值域【詳解】SKIPIF1<0恒成立,SKIPIF1<0函數(shù)SKIPIF1<0的定義域為SKIPIF1<0設SKIPIF1<0由復合函數(shù)的單調(diào)性可知函數(shù)SKIPIF1<0在定義域SKIPIF1<0上先增后減,函數(shù)取到最大值即:SKIPIF1<0函數(shù)的值域為SKIPIF1<0故選SKIPIF1<0【點睛】本題主要考查了求復合函數(shù)的值域,在求解時先求出函數(shù)的定義域,然后判斷出函數(shù)的單調(diào)性,最后求出函數(shù)值域,需要掌握解題方法17.(2021·湖北·襄陽四中高三階段練習)地震的震級R與地震釋放的能量E的關系為R=SKIPIF1<0(lgE-11.4).2011年3月11日,日本東海岸發(fā)生了9.級特大地震,2008年中國汶川的地震級別為8.0級,那么2011年地震的能量是2008年地震能量的__________倍.【答案】10SKIPIF1<0【分析】根據(jù)題中給出的關系式求出9.0級地震釋放的能量與8.0級地震釋放能量的比即可.【詳解】設震級9.0級、8.0級地震釋放的能量分別為SKIPIF1<0則SKIPIF1<0,即SKIPIF1<0.那么2011年地震的能量是2008年地震能量的10SKIPIF1<0倍.故答案為10SKIPIF1<0.【點睛】本題主要考查了對數(shù)函數(shù)的應用,以及對數(shù)的運算,屬于基礎題.18.(2021·天津·南開中學高三階段練習)若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上是增函數(shù),則實數(shù)SKIPIF1<0的取值范圍是______.【答案】SKIPIF1<0【分析】令SKIPIF1<0,由題設易知SKIPIF1<0在SKIPIF1<0上為增函數(shù),根據(jù)二次函數(shù)的性質(zhì)列不等式組求SKIPIF1<0的取值范圍.【詳解】由題設,令SKIPIF1<0,而SKIPIF1<0為增函數(shù),∴要使SKIPIF1<0在SKIPIF1<0上是增函數(shù),即SKIPIF1<0在SKIPIF1<0上為增函數(shù),∴SKIPIF1<0或SKIPIF1<0,可得SKIPIF1<0或SKIPIF1<0,∴SKIPIF1<0的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<0題型五:比較指數(shù)式、對數(shù)式的大小19.(2022·全國·高三專題練習)已知函數(shù)SKIPIF1<0則下述關系式正確的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)SKIPIF1<0,為偶函數(shù),在(0,+∞)上單調(diào)遞減求解.【詳解】解:∵SKIPIF1<0,∴f(x)為偶函數(shù),且f(x)在(0,+∞)上單調(diào)遞減,∴SKIPIF1<0SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0,故選:A.20.(2022·甘肅·高臺縣第一中學高三階段練習(文))設SKIPIF1<0是定義域為SKIPIF1<0的偶函數(shù),且在SKIPIF1<0單調(diào)遞增,設SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】先將SKIPIF1<0化為同底數(shù)的冪,利用指數(shù)對數(shù)函數(shù)的性質(zhì)比較SKIPIF1<0、SKIPIF1<0、SKIPIF1<0三個數(shù)的大小關系,再由函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的單調(diào)性并結(jié)合偶函數(shù)的性質(zhì)可得出SKIPIF1<0、SKIPIF1<0、SKIPIF1<0的大小關系.【詳解】SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,由于函數(shù)SKIPIF1<0是偶函數(shù),在區(qū)間SKIPIF1<0上單調(diào)遞增,所以在SKIPIF1<0上單調(diào)遞減,由于函數(shù)SKIPIF1<0為偶函數(shù),則SKIPIF1<0,即SKIPIF1<0,故選:A.【點睛】本題考查利用函數(shù)的單調(diào)性比較函數(shù)值的大小關系,涉及指數(shù)對數(shù)的運算和比較大小,考查推理能力,屬于中等題.關鍵是轉(zhuǎn)化為SKIPIF1<0上的單調(diào)性再比較.21.(2022·北京·北師大二附中高三階段練習)已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的大小關系為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】由指數(shù)冪運算和對數(shù)恒等式得SKIPIF1<0,再結(jié)合SKIPIF1<0和SKIPIF1<0的單調(diào)性比較大小即可.【詳解】SKIPIF1<0由于函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,由于函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,所以SKIPIF1<0.故選:A.【點睛】本題考查指數(shù)式和對數(shù)式的大小比較,一般利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性,結(jié)合中間值法來比較,考查推理能力,屬于中等題.本題解題的關鍵在于利用對數(shù)恒等式和指數(shù)冪運算得SKIPIF1<0,再借助函數(shù)SKIPIF1<0和SKIPIF1<0以及中間值SKIPIF1<0比較大小.【高考必刷】一、單選題1.(2022·天津市武清區(qū)楊村第一中學高三階段練習)已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上是單調(diào)函數(shù),則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】求出二次函數(shù)圖像的對稱軸,由題意可得對稱軸小于等于SKIPIF1<0,或大于等于SKIPIF1<0,從而可求出SKIPIF1<0的取值范圍.【詳解】SKIPIF1<0的圖像的對稱軸為SKIPIF1<0,因為函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上時單調(diào)函數(shù),所以SKIPIF1<0或SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0,即SKIPIF1<0的取值范圍是SKIPIF1<0,故選:D2.(2021·寧夏·青銅峽市寧朔中學高三階段練習(文))已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則a,b,c的大小關系為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】分析:由題意結(jié)合對數(shù)函數(shù)的性質(zhì)整理計算即可求得最終結(jié)果.詳解:由題意結(jié)合對數(shù)函數(shù)的性質(zhì)可知:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,據(jù)此可得:SKIPIF1<0.本題選擇D選項.點睛:對于指數(shù)冪的大小的比較,我們通常都是運用指數(shù)函數(shù)的單調(diào)性,但很多時候,因冪的底數(shù)或指數(shù)不相同,不能直接利用函數(shù)的單調(diào)性進行比較.這就必須掌握一些特殊方法.在進行指數(shù)冪的大小比較時,若底數(shù)不同,則首先考慮將其轉(zhuǎn)化成同底數(shù),然后再根據(jù)指數(shù)函數(shù)的單調(diào)性進行判斷.對于不同底而同指數(shù)的指數(shù)冪的大小的比較,利用圖象法求解,既快捷,又準確.3.(2021·廣西·玉林市育才中學高三階段練習(理))函數(shù)SKIPIF1<0的最小值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】設SKIPIF1<0,將原函數(shù)式轉(zhuǎn)化為關于SKIPIF1<0的二次函數(shù)的形式,再利用二次函數(shù)的值域求出原函數(shù)的值域即可【詳解】解:設SKIPIF1<0,則SKIPIF1<0則函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,故選A.【點睛】本題主要考查了利用換元法求函數(shù)的值域,解數(shù)學題時,把某個式子看成一個整體,用一個變量去代替它,從而使問題得到簡化,這叫換元法,屬于基礎題4.(2017·湖南·長郡中學高三階段練習(理))冪函數(shù)SKIPIF1<0,當SKIPIF1<0取不同的正數(shù)時,在區(qū)間SKIPIF1<0上它們的圖象是一簇曲線(如圖).設點SKIPIF1<0,SKIPIF1<0,連接AB,線段AB恰好被其中的兩個冪函數(shù)SKIPIF1<0,SKIPIF1<0的圖象三等分,即有SKIPIF1<0,則mn等于(

)A.1 B.2 C.3 D.無法確定【答案】A【解析】根據(jù)三等分關系求出坐標SKIPIF1<0,SKIPIF1<0,即可求出對應冪函數(shù)解析式,解出mn的值.【詳解】由題:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故選:A.【點睛】此題考查冪函數(shù)的圖像性質(zhì)辨析,根據(jù)圖像分析點的坐標,根據(jù)坐標求函數(shù)解析式.5.(2020·陜西西安·高三階段練習(理))定義新運算“SKIPIF1<0”如下:SKIPIF1<0,已知函數(shù)SKIPIF1<0,則滿足SKIPIF1<0的實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】根據(jù)新定義,得到SKIPIF1<0的表達式,判斷函數(shù)SKIPIF1<0在定義域的單調(diào)性,可得結(jié)果.【詳解】當SKIPIF1<0時,SKIPIF1<0SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0;所以SKIPIF1<0,易知,SKIPIF1<0在SKIPIF1<0單調(diào)遞增,SKIPIF1<0在SKIPIF1<0單調(diào)遞增,且當SKIPIF1<0時,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0得SKIPIF1<0,解得SKIPIF1<0.故選:C【點睛】本題考查對新定義的理解,以及分段函數(shù)的單調(diào)性,重點在于寫出函數(shù)SKIPIF1<0以及判斷單調(diào)性,難點在于SKIPIF1<0滿足的不等式,屬中檔題.6.(2021·江蘇省鎮(zhèn)江中學高三階段練習)滿足SKIPIF1<0的實數(shù)m的取值范圍是(

).A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)冪函數(shù)SKIPIF1<0的單調(diào)性結(jié)合函數(shù)值的正負,將所求不等式轉(zhuǎn)化為關于SKIPIF1<0的一次不等式組,求解即可.【詳解】冪函數(shù)SKIPIF1<0在SKIPIF1<0為減函數(shù),且函數(shù)值為正,在SKIPIF1<0為減函數(shù),且函數(shù)值為負,SKIPIF1<0等價于,SKIPIF1<0或SKIPIF1<0或SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0或SKIPIF1<0,所以不等式的解集為SKIPIF1<0.故選:D.【點睛】本題考查不等式的求解,利用冪函數(shù)的單調(diào)性是解題的關鍵,考查分類討論思想和計算求解能力,屬于中檔題.7.(2022·北京·人大附中高三階段練習)設SKIPIF1<0,則“函數(shù)SKIPIF1<0的圖象經(jīng)過點SKIPIF1<0”是“函數(shù)SKIPIF1<0在SKIPIF1<0上遞減”的(

)A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件【答案】A【分析】由冪函數(shù)的性質(zhì)結(jié)合充分條件和必要條件的定義即可得出答案.【詳解】函數(shù)SKIPIF1<0的圖象經(jīng)過點SKIPIF1<0,則SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上遞減,而SKIPIF1<0在SKIPIF1<0上遞減,函數(shù)SKIPIF1<0的圖象不一定經(jīng)過點SKIPIF1<0,如:SKIPIF1<0.所以“函數(shù)SKIPIF1<0的圖象經(jīng)過點SKIPIF1<0”是“函數(shù)SKIPIF1<0在SKIPIF1<0上遞減”的充分不必要條件.故選:A.8.(2020·全國·高三課時練習(理))若SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】將不等式變?yōu)镾KIPIF1<0,根據(jù)SKIPIF1<0的單調(diào)性知SKIPIF1<0,以此去判斷各個選項中真數(shù)與SKIPIF1<0的大小關系,進而得到結(jié)果.【詳解】由SKIPIF1<0得:SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0為SKIPIF1<0上的增函數(shù),SKIPIF1<0為SKIPIF1<0上的減函數(shù),SKIPIF1<0為SKIPIF1<0上的增函數(shù),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則A正確,B錯誤;SKIPIF1<0與SKIPIF1<0的大小不確定,故CD無法確定.故選:A.【點睛】本題考查對數(shù)式的大小的判斷問題,解題關鍵是能夠通過構(gòu)造函數(shù)的方式,利用函數(shù)的單調(diào)性得到SKIPIF1<0的大小關系,考查了轉(zhuǎn)化與化歸的數(shù)學思想.9.(2019·上海市吳淞中學高三開學考試)已知SKIPIF1<0,且SKIPIF1<0,函數(shù)SKIPIF1<0在同一坐標系中的圖象可能是A. B. C. D.【答案】A【詳解】由題可知,當?shù)讛?shù)a>1時,指數(shù)函數(shù)與對數(shù)函數(shù)均為增函數(shù),直線與y軸的截距大于1,當?shù)讛?shù)0<a<1時,指數(shù)函數(shù)與對數(shù)函數(shù)均為減函數(shù),直線與y軸的截距小于1,故選A.10.(2022·甘肅·蘭州市第五十五中學高三開學考試(文))函數(shù)SKIPIF1<0的圖象大致為(

)A. B. C. D.【答案】B【分析】先判斷函數(shù)的奇偶性排除選項A,再根據(jù)SKIPIF1<0排除選項D,又當SKIPIF1<0時,SKIPIF1<0,排除選項C,即得解.【詳解】由題得SKIPIF1<0,函數(shù)的定義域關于原點對稱.SKIPIF1<0,所以函數(shù)SKIPIF1<0是奇函數(shù),所以排除選項A;又SKIPIF1<0,所以排除選項D;又當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,指數(shù)函數(shù)SKIPIF1<0是爆炸式增長,所以SKIPIF1<0,SKIPIF1<0,所以排除選項C;故選:B11.(2022·遼寧葫蘆島·高三期中)函數(shù)SKIPIF1<0(SKIPIF1<0,且SKIPIF1<0)的圖象恒過定點SKIPIF1<0,若點SKIPIF1<0在橢圓SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)上,則SKIPIF1<0的最小值為(

)A.12 B.14 C.16 D.18【答案】C【分析】求出SKIPIF1<0的坐標代入橢圓方程,再將SKIPIF1<0化為積為定值的形式,利用基本不等式可求得結(jié)果.【詳解】由SKIPIF1<0,即SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,因為點SKIPIF1<0在橢圓SKIPIF1<0上,所以SKIPIF1<0(SKIPIF1<0,SKIPIF1<0),所以SKIPIF1<0,當且僅當SKIPIF1<0時,等號成立.故選:C【點睛】易錯點睛:利用基本不等式求最值時,要注意其必須滿足的三個條件:(1)“一正二定三相等”“一正”就是各項必須為正數(shù);(2)“二定”就是要求和的最小值,必須把構(gòu)成和的二項之積轉(zhuǎn)化成定值;要求積的最大值,則必須把構(gòu)成積的因式的和轉(zhuǎn)化成定值;(3)“三相等”是利用基本不等式求最值時,必須驗證等號成立的條件,若不能取等號則這個定值就不是所求的最值,這也是最容易發(fā)生錯誤的地方.12.(2020·安徽·高三階段練習(文))已知函數(shù)SKIPIF1<0,SKIPIF1<0,以下命題:①若SKIPIF1<0,則SKIPIF1<0;②若SKIPIF1<0,則SKIPIF1<0;③若SKIPIF1<0,則SKIPIF1<0;④若SKIPIF1<0,則SKIPIF1<0.其中正確的個數(shù)是(

)A.1 B.2 C.3 D.4【答案】C【解析】畫出函數(shù)圖象易判斷①②正確,當SKIPIF1<0,討論SKIPIF1<0和SKIPIF1<0可判斷③④.【詳解】如圖,畫出SKIPIF1<0的圖象,SKIPIF1<0在SKIPIF1<0單調(diào)遞增,觀察圖形易判斷①②正確,對③④,當SKIPIF1<0時,若SKIPIF1<0,則SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,化為SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,故③正確.故選:C.【點睛】本題考查對數(shù)函數(shù)的應用,解題的關鍵是畫出函數(shù)的圖象,利用圖象結(jié)合對數(shù)函數(shù)性質(zhì)進行化簡判斷.13.(2022·江蘇·高郵市第一中學高三階段練習)已知55<84,134<85.設a=log53,b=log85,c=log138,則(

)A.a(chǎn)<b<c B.b<a<c C.b<c<a D.c<a<b【答案】A【分析】由題意可得SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,利用作商法以及基本不等式可得出SKIPIF1<0、SKIPIF1<0的大小關系,由SKIPIF1<0,得SKIPIF1<0,結(jié)合SKIPIF1<0可得出SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,結(jié)合SKIPIF1<0,可得出SKIPIF1<0,綜合可得出SKIPIF1<0、SKIPIF1<0、SKIPIF1<0的大小關系.【詳解】由題意可知SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;由SKIPIF1<0,得SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0;由SKIPIF1<0,得SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0.綜上所述,SKIPIF1<0.故選:A.【點睛】本題考查對數(shù)式的大小比較,涉及基本不等式、對數(shù)式與指數(shù)式的互化以及指數(shù)函數(shù)單調(diào)性的應用,考查推理能力,屬于中等題.14.(2017·遼寧·東北育才學校高三階段練習(文))已知SKIPIF1<0,則下列不等式一定成立的是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】根據(jù)已知條件,由對數(shù)函數(shù)的單調(diào)性可得SKIPIF1<0,然后利用反比例函數(shù)的單調(diào)性可以否定A;利用冪函數(shù)和指數(shù)函數(shù)的單調(diào)性,將不等式兩邊的數(shù)與中間量SKIPIF1<0比較大小,可以證明B;根據(jù)對數(shù)函數(shù)的性質(zhì),當SKIPIF1<0時可以否定C;由指數(shù)函數(shù)的性質(zhì)可以否定D.【詳解】SKIPIF1<0為定義在SKIPIF1<0上的單調(diào)減函數(shù),故由已知SKIPIF1<0可得SKIPIF1<0,∵反比例函數(shù)SKIPIF1<0在SKIPIF1<0上的單調(diào)減函數(shù),∴SKIPIF1<0,故A錯誤;SKIPIF1<0,∴冪函數(shù)SKIPIF1<0在SKIPIF1<0上的單調(diào)遞增,又∵SKIPIF1<0,∴SKIPIF1<0;∵SKIPIF1<0,∴指數(shù)函數(shù)SKIPIF1<0在SKIPIF1<0上的單調(diào)遞減,又SKIPIF1<0∴SKIPIF1<0.∴SKIPIF1<0,故B正確;由已知只能得到SKIPIF1<0,SKIPIF1<0當SKIPIF1<0時SKIPIF1<0,故C錯誤;由SKIPIF1<0可得SKIPIF1<0,故D錯誤.故選:B.【點睛】本題考查冪指對函數(shù)的性質(zhì),屬基礎題.綜合利用冪指對函數(shù)的單調(diào)性比較大小,應當熟練掌握冪指對函數(shù)的單調(diào)性,對于冪函數(shù),在指數(shù)大于0時,在第一象限內(nèi)單調(diào)遞增,當指數(shù)小于0時,在第一象限內(nèi)單調(diào)遞減;對于指數(shù)函數(shù)和對數(shù)函數(shù),當?shù)讛?shù)大于1時在定義域內(nèi)單調(diào)遞增,當?shù)讛?shù)大于0小于1時在定義域內(nèi)單調(diào)遞減.15.(2020·湖南長沙·高三階段練習(理))已知偶函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的大小關系為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】偶函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,化簡SKIPIF1<0,利用中間量比較大小得解.【詳解】∵偶函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0.故選:C【分析】本題考查函數(shù)奇偶性、單調(diào)性及對數(shù)式大小比較,屬于基礎題.16.(2019·廣東茂名·高三階段練習(理))已知函數(shù)SKIPIF1<0,滿足SKIPIF1<0,則實數(shù)SKIPIF1<0的取值范圍是A.(1,2) B.(2,3) C.(1,3) D.(2,4)【答案】A【分析】首先求出函數(shù)的定義域,把SKIPIF1<0代入函數(shù)中化簡,解出不等式的解,即可得到答案.【詳解】函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,由SKIPIF1<0可得:SKIPIF1<0,兩邊平方:SKIPIF1<0則SKIPIF1<0(1)或SKIPIF1<0(2)解(1)得:SKIPIF1<0無解,解(2)得:SKIPIF1<0,所以實數(shù)SKIPIF1<0的取值范圍是:SKIPIF1<0;故答案選A【點睛】本題主要考查對數(shù)不等式的解,解題時注意定義域的求解,有一定綜合性,屬于中檔題.17.(2022·全國·高三專題練習)若關于SKIPIF1<0的不等式SKIPIF1<0在SKIPIF1<0恒成立,則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】轉(zhuǎn)化為當SKIPIF1<0時,函數(shù)SKIPIF1<0的圖象不在SKIPIF1<0的圖象的上方,根據(jù)圖象列式可解得結(jié)果.【詳解】由題意知關于SKIPIF1<0的不等式SKIPIF1<0在SKIPIF1<0恒成立,所以當SKIPIF1<0時,函數(shù)SKIPIF1<0的圖象不在SKIPIF1<0的圖象的上方,由圖可知SKIPIF1<0,解得SKIPIF1<0.故選:A【點睛】關鍵點點睛:利用函數(shù)SKIPIF1<0的圖象與函數(shù)SKIPIF1<0的圖象求解是解題關鍵.18.(2019·天津市武清區(qū)楊村第一中學高三階段練習)已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上是增函數(shù),且SKIPIF1<0.若SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論