新高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)講義03 不等式(含解析)_第1頁
新高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)講義03 不等式(含解析)_第2頁
新高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)講義03 不等式(含解析)_第3頁
新高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)講義03 不等式(含解析)_第4頁
新高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)講義03 不等式(含解析)_第5頁
已閱讀5頁,還剩29頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

解密03講:不等式【考點解密】1.兩個實數(shù)比較大小的方法(1)作差法eq\b\lc\{\rc\(\a\vs4\al\co1(a-b>0?a>b,a-b=0?a=b,a-b<0?a<b))(a,b∈R)(2)作商法eq\b\lc\{\rc\(\a\vs4\al\co1(\f(a,b)>1?a>b,\f(a,b)=1?a=b,\f(a,b)<1?a<b))(a∈R,b>0)2.不等式的基本性質(zhì)性質(zhì)性質(zhì)內(nèi)容特別提醒對稱性a>b?b<a?傳遞性a>b,b>c?a>c?可加性a>b?a+c>b+c?可乘性eq\b\lc\\rc\}(\a\vs4\al\co1(a>b,c>0))?ac>bc注意c的符號eq\b\lc\\rc\}(\a\vs4\al\co1(a>b,c<0))?ac<bc同向可加性eq\b\lc\\rc\}(\a\vs4\al\co1(a>b,c>d))?a+c>b+d?同向同正可乘性eq\b\lc\\rc\}(\a\vs4\al\co1(a>b>0,c>d>0))?ac>bd?可乘方性a>b>0?an>bn(n∈N,n≥1)a,b同為正數(shù)可開方性a>b>0?eq\r(n,a)>eq\r(n,b)(n∈N,n≥2)a,b同為正數(shù)3.一元二次不等式的解集判別式Δ=b2-4acΔ>0Δ=0Δ<0二次函數(shù)y=ax2+bx+c(a>0)的圖象方程ax2+bx+c=0(a>0)的根有兩相異實根x1,x2(x1<x2)有兩相等實根x1=x2=-eq\f(b,2a)沒有實數(shù)根ax2+bx+c>0(a>0)的解集{x|x<x1或x>x2}eq\b\lc\{\rc\}(\a\vs4\al\co1(x\b\lc\|\rc\(\a\vs4\al\co1(x≠-\f(b,2a))))){x|x∈R}ax2+bx+c<0(a>0)的解集{x|x1<x<x2}??4.基本不等式eq\r(ab)≤eq\f(a+b,2)(1)基本不等式成立的條件:a>0,b>0.(2)等號成立的條件:當(dāng)且僅當(dāng)a=b時取等號.(3)其中eq\f(a+b,2)叫做正數(shù)a,b的算術(shù)平均數(shù),eq\r(ab)叫做正數(shù)a,b的幾何平均數(shù).5.幾個重要的不等式(1)a2+b2≥2ab(a,b∈R).(2)eq\f(b,a)+eq\f(a,b)≥2(a,b同號).(3)ab≤eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(a+b,2)))2(a,b∈R).(4)eq\f(a2+b2,2)≥eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(a+b,2)))2(a,b∈R).以上不等式等號成立的條件均為a=b.6.用基本不等式求最值用基本不等式eq\r(ab)≤eq\f(a+b,2)求最值應(yīng)注意:一正二定三相等.(1)a,b是正數(shù);(2)①如果ab等于定值P,那么當(dāng)a=b時,和a+b有最小值2eq\r(P);②如果a+b等于定值S,那么當(dāng)a=b時,積ab有最大值eq\f(1,4)S2.(3)討論等號成立的條件是否滿足.【方法技巧】一、比較大小的常用方法(1)作差法:①作差;②變形;③定號;④得出結(jié)論.(2)作商法:①作商;②變形;③判斷商與1的大小關(guān)系;④得出結(jié)論.(3)構(gòu)造函數(shù),利用函數(shù)的單調(diào)性比較大?。⑴袛嗖坏仁降某S梅椒?1)直接利用不等式的性質(zhì)逐個驗證,利用不等式的性質(zhì)判斷不等式是否成立時要特別注意前提條件.(2)利用特殊值法排除錯誤答案.(3)利用函數(shù)的單調(diào)性,當(dāng)直接利用不等式的性質(zhì)不能比較大小時,可以利用指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)等函數(shù)的單調(diào)性來比較.三、利用基本不等式求最值(1)前提:“一正”“二定”“三相等”.(2)要根據(jù)式子的特征靈活變形,配湊出積、和為常數(shù)的形式,然后再利用基本不等式.(3)條件最值的求解通常有三種方法:一是配湊法;二是將條件靈活變形,利用常數(shù)“1”代換的方法;三是消元法.【核心題型】題型一:比較兩個數(shù)(式)的大小1.已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的大小關(guān)系為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】通過作差法,SKIPIF1<0,確定符號,排除D選項;通過作差法,SKIPIF1<0,確定符號,排除C選項;通過作差法,SKIPIF1<0,確定符號,排除A選項;【詳解】由SKIPIF1<0,且SKIPIF1<0,故SKIPIF1<0;由SKIPIF1<0且SKIPIF1<0,故SKIPIF1<0;SKIPIF1<0且SKIPIF1<0,故SKIPIF1<0.所以SKIPIF1<0,故選:B.2.已知:SKIPIF1<0,則3,SKIPIF1<0,SKIPIF1<0的大小關(guān)系是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】先將指數(shù)式化為對數(shù)式,再根據(jù)對數(shù)函數(shù)單調(diào)性以及運算法則比較大小,確定選項.【詳解】SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0;又SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0.故選D.【點睛】本題考查指數(shù)式化與對數(shù)式關(guān)系以及對數(shù)函數(shù)單調(diào)性,考查基本分析求解能力,屬基礎(chǔ)題.3.設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0的大小關(guān)系是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.無法確定【答案】A【分析】利用作差法解出SKIPIF1<0的結(jié)果,然后與0進行比較,即可得到答案【詳解】解:因為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,∴SKIPIF1<0,故選:A題型二:不等式的基本性質(zhì)4.對于實數(shù)a,b,c,下列命題中正確的是(

)A.若SKIPIF1<0,則SKIPIF1<0B.若SKIPIF1<0,則SKIPIF1<0C.若SKIPIF1<0,則SKIPIF1<0D.若SKIPIF1<0,則SKIPIF1<0【答案】D【分析】由不等式性質(zhì)判斷各選項正誤即可.【詳解】對于選項A,注意到若SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0.故A錯誤.對于選項B,設(shè)SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0.又SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0.故B錯誤.對于C選項,因SKIPIF1<0,則SKIPIF1<0,故C錯誤.對于D選項,SKIPIF1<0,因SKIPIF1<0,則SKIPIF1<0,故D正確.故選:D5.已知a,b,c,d均為實數(shù),則下列命題正確的是(

)A.若a>b,c>d,則a-d>b-c B.若a>b,c>d則ac>bdC.若ab>0,bc-ad>0,則SKIPIF1<0 D.若a>b,c>d>0,則SKIPIF1<0【答案】AC【分析】根據(jù)不等式的性質(zhì)和特殊值法逐項分析可求得答案.【詳解】解:由不等式性質(zhì)逐項分析:A選項:由SKIPIF1<0,故SKIPIF1<0,根據(jù)不等式同向相加的原則SKIPIF1<0,故A正確B選項:若SKIPIF1<0,SKIPIF1<0則SKIPIF1<0,故B錯誤;C選項:SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,化簡得SKIPIF1<0,故C正確;D選項:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0則SKIPIF1<0,故D錯誤.故選:AC6.已知SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】AC【分析】對A,對SKIPIF1<0兩邊同除ab化簡即可判斷;對B,對不等式移項進行因式分解得SKIPIF1<0,即可進一步判斷SKIPIF1<0的符號不確定,即可判斷;對C,對不等式移項進行因式分解得SKIPIF1<0,由SKIPIF1<0即可判斷;對D,對不等式移項進行根式運算得SKIPIF1<0,即可進一步判斷【詳解】對A,SKIPIF1<0,A正確;對B,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,不等式不一定成立,B錯誤;對C,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,不等式成立,C正確;對D,SKIPIF1<0,所以SKIPIF1<0,不等式不成立,D錯誤;故選:AC.題型三:不等式性質(zhì)的綜合應(yīng)用7.已知SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】利用待定系數(shù)法得出SKIPIF1<0,并計算出SKIPIF1<0的取值范圍,利用不等式的性質(zhì)可得出SKIPIF1<0的取值范圍.【詳解】設(shè)SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由不等式的性質(zhì)可得SKIPIF1<0,即SKIPIF1<0,因此,SKIPIF1<0的取值范圍是SKIPIF1<0,故選D.【點睛】本題考查求代數(shù)式的取值范圍,解題的關(guān)鍵就是將所求代數(shù)式用已知的代數(shù)式加以表示,在求解可充分利用待定系數(shù)法,考查運算求解能力,屬于中等題.8.已知SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】利用待定系數(shù)法求得SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0,結(jié)合SKIPIF1<0,從而可得結(jié)果.【詳解】令SKIPIF1<0則SKIPIF1<0,∴SKIPIF1<0,又SKIPIF1<0,…∴①SKIPIF1<0,∴SKIPIF1<0…②∴①SKIPIF1<0②得SKIPIF1<0.則SKIPIF1<0.故選C.【點睛】本題主要考查不等式的性質(zhì)以及指數(shù)函數(shù)的性質(zhì),意在考查綜合運用所學(xué)知識解答問題的能力,屬于中檔題.9.已知SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的取值范圍為__________.【答案】SKIPIF1<0【分析】由SKIPIF1<0可以推出SKIPIF1<0,由不等式的性質(zhì)可以得到SKIPIF1<0的取值范圍.【詳解】SKIPIF1<0,而SKIPIF1<0,根據(jù)不等式的性質(zhì)可得SKIPIF1<0,所以SKIPIF1<0的取值范圍為SKIPIF1<0.【點睛】本題考查了不等式的性質(zhì).不等式的性質(zhì)中沒有相除性,可以利用相乘性進行轉(zhuǎn)化,但是應(yīng)用不等式相乘性時,要注意不等式的正負(fù)性.題型四:利用基本不等式求最值命題點1配湊法10.設(shè)實數(shù)SKIPIF1<0滿足SKIPIF1<0,函數(shù)SKIPIF1<0的最小值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.6【答案】A【解析】將函數(shù)變形為SKIPIF1<0,再根據(jù)基本不等式求解即可得答案.【詳解】解:由題意SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時等號成立,所以函數(shù)SKIPIF1<0的最小值為SKIPIF1<0.故選:A.【點睛】易錯點睛:利用基本不等式求最值時,要注意其必須滿足的三個條件:(1)“一正二定三相等”“一正”就是各項必須為正數(shù);(2)“二定”就是要求和的最小值,必須把構(gòu)成和的二項之積轉(zhuǎn)化成定值;要求積的最大值,則必須把構(gòu)成積的因式的和轉(zhuǎn)化成定值;(3)“三相等”是利用基本不等式求最值時,必須驗證等號成立的條件,若不能取等號則這個定值就不是所求的最值,這也是最容易發(fā)生錯誤的地方11.已知x>0,y>0,2x+3y=6,則xy的最大值為________.【答案】eq\f(3,2)【詳解】因為x>0,y>0,2x+3y=6,所以xy=eq\f(1,6)(2x·3y)≤eq\f(1,6)·eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2x+3y,2)))2=eq\f(1,6)·eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(6,2)))2=eq\f(3,2).當(dāng)且僅當(dāng)2x=3y,即x=eq\f(3,2),y=1時,xy取到最大值eq\f(3,2).12.已知a>b>c,求(a-c)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,a-b)+\f(1,b-c)))的最小值.【詳解】(a-c)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,a-b)+\f(1,b-c)))=(a-b+b-c)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,a-b)+\f(1,b-c)))=1+1+eq\f(b-c,a-b)+eq\f(a-b,b-c).∵a>b>c,∴a-b>0,b-c>0,∴2+eq\f(b-c,a-b)+eq\f(a-b,b-c)≥2+2eq\r(\f(b-c,a-b)·\f(a-b,b-c))=4,當(dāng)且僅當(dāng)a-b=b-c,即2b=a+c時取等號,∴(a-c)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,a-b)+\f(1,b-c)))的最小值為4.命題點2常數(shù)代換法13.已知SKIPIF1<0,則SKIPIF1<0的最小值是(

)A.7 B.SKIPIF1<0 C.4 D.SKIPIF1<0【答案】D【分析】由“1”的妙用和基本不等式可求得結(jié)果.【詳解】因為SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0即SKIPIF1<0時,等號成立.結(jié)合SKIPIF1<0可知,當(dāng)SKIPIF1<0時,SKIPIF1<0有最小值SKIPIF1<0.故選:D.14.已知SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值為(

)A.9 B.10 C.11 D.SKIPIF1<0【答案】A【分析】利用“乘1法”將問題轉(zhuǎn)化為求SKIPIF1<0的最小值,然后展開利用基本不等式求解.【詳解】SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0時等號成立,故SKIPIF1<0的最小值為9.故選:A.【點睛】易錯點睛:利用基本不等式求最值時,要注意其必須滿足的三個條件:(1)“一正”就是各項必須為正數(shù);(2)“二定”就是要求和的最小值,必須把構(gòu)成和的二項之積轉(zhuǎn)化成定值;要求積的最大值,則必須把構(gòu)成積的因式的和轉(zhuǎn)化成定值;(3)“三相等”是利用基本不等式求最值時,必須驗證等號成立的條件,若不能取等號則這個定值就不是所求的最值,這也是最容易發(fā)生錯誤的地方.15.若實數(shù)SKIPIF1<0,則SKIPIF1<0的最小值為(

)A.SKIPIF1<0 B.1 C.SKIPIF1<0 D.2【答案】D【分析】由條件變形SKIPIF1<0,再結(jié)合基本不等式求最小值.【詳解】由條件可知,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,當(dāng)SKIPIF1<0,即SKIPIF1<0,結(jié)合條件SKIPIF1<0,可知SKIPIF1<0時,等號成立,所以SKIPIF1<0的最小值為SKIPIF1<0.故選:D16.已知SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值為_________.【答案】4【分析】根據(jù)已知條件,將所求的式子化為SKIPIF1<0,利用基本不等式即可求解.【詳解】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0=4時取等號,結(jié)合SKIPIF1<0,解得SKIPIF1<0,或SKIPIF1<0時,等號成立.故答案為:SKIPIF1<0【點睛】本題考查應(yīng)用基本不等式求最值,“1”的合理變換是解題的關(guān)鍵,屬于基礎(chǔ)題.命題點3消元法17.負(fù)實數(shù)SKIPIF1<0、SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最小值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】由已知可得SKIPIF1<0,再利用基本不等式可求得SKIPIF1<0的最小值.【詳解】因為負(fù)實數(shù)SKIPIF1<0、SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,由基本不等式可得,當(dāng)且僅當(dāng)SKIPIF1<0時,即當(dāng)SKIPIF1<0時,等號成立.故SKIPIF1<0的最小值為SKIPIF1<0.故選:A.18.若實數(shù)x,y滿足xy+3x=3eq\b\lc\(\rc\)(\a\vs4\al\co1(0<x<\f(1,2))),則eq\f(3,x)+eq\f(1,y-3)的最小值為________.【答案】8【詳解】∵實數(shù)x,y滿足xy+3x=3eq\b\lc\(\rc\)(\a\vs4\al\co1(0<x<\f(1,2))),∴x=eq\f(3,y+3),∴0<eq\f(3,y+3)<eq\f(1,2),解得y>3.則eq\f(3,x)+eq\f(1,y-3)=y(tǒng)+3+eq\f(1,y-3)=y(tǒng)-3+eq\f(1,y-3)+6≥2eq\r(y-3·\f(1,y-3))+6=8,當(dāng)且僅當(dāng)y=4,x=eq\f(3,7)時取等號.19.已知SKIPIF1<0SKIPIF1<0,則SKIPIF1<0的最小值是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.2【答案】B【分析】依題意可得SKIPIF1<0,又SKIPIF1<0,即可得到SKIPIF1<0,從而得到SKIPIF1<0,利用基本不等式計算可得;【詳解】因為SKIPIF1<0,所以SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時取等號,所以SKIPIF1<0的最小值是SKIPIF1<0;故選:B題型五:基本不等式的綜合應(yīng)用20.已知正實數(shù)a、b滿足SKIPIF1<0,若SKIPIF1<0的最小值為4,則實數(shù)m的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】由題意可得SKIPIF1<0=SKIPIF1<0SKIPIF1<0,當(dāng)SKIPIF1<0,即SKIPIF1<0時等號成立,所以有SKIPIF1<0,將SKIPIF1<0化為SKIPIF1<0,再利用基本不等式可求得SKIPIF1<0的范圍.【詳解】解:因為SKIPIF1<0為正實數(shù),SKIPIF1<0=SKIPIF1<0SKIPIF1<0,當(dāng)SKIPIF1<0,即SKIPIF1<0時等號成立,此時有SKIPIF1<0,又因為SKIPIF1<0,所以SKIPIF1<0,由基本不等式可知SKIPIF1<0(SKIPIF1<0時等號成立),所以SKIPIF1<0.故選:B.21.在SKIPIF1<0中,角SKIPIF1<0所對的邊分別為SKIPIF1<0,且點SKIPIF1<0滿足SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的最大值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】利用向量知識可得SKIPIF1<0,兩邊平方可得SKIPIF1<0,再利用不等式知識可求得結(jié)果.【詳解】因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,整理得SKIPIF1<0,所以SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.所以SKIPIF1<0的最大值為SKIPIF1<0故選:A【點睛】關(guān)鍵點點睛:將向量條件SKIPIF1<0化為SKIPIF1<0,利用向量數(shù)量積的運算律運算得到SKIPIF1<0是解題關(guān)鍵.22.設(shè)等差數(shù)列{an}的公差為d,其前n項和是Sn,若a1=d=1,則eq\f(Sn+8,an)的最小值是________.【答案】eq\f(9,2)【詳解】an=a1+(n-1)d=n,Sn=eq\f(n1+n,2),所以eq\f(Sn+8,an)=eq\f(\f(n1+n,2)+8,n)=eq\f(1,2)eq\b\lc\(\rc\)(\a\vs4\al\co1(n+\f(16,n)+1))≥eq\f(1,2)eq\b\lc\(\rc\)(\a\vs4\al\co1(2\r(n·\f(16,n))+1))=eq\f(9,2),當(dāng)且僅當(dāng)n=eq\f(16,n),即n=4時取等號,所以eq\f(Sn+8,an)的最小值是eq\f(9,2).【高考必刷】一、單選題1.(2021·山西太原·高一階段練習(xí))已知SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0和SKIPIF1<0的大小關(guān)系為(

)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】D【分析】利用作差法,令SKIPIF1<0,結(jié)果配方,判斷符號后得出結(jié)論.【詳解】SKIPIF1<0,故有SKIPIF1<0,故選:D.【點睛】本題考查用比較法證明不等式的方法,作差﹣﹣變形﹣﹣判斷符號﹣﹣得出結(jié)論涉及完全平方公式的應(yīng)用.屬于基礎(chǔ)題.2.(2022·湖北·葛洲壩中學(xué)高一階段練習(xí))已知SKIPIF1<0,則SKIPIF1<0的大小關(guān)系是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.不能確定【答案】A【分析】作差法比較大小,即得解【詳解】由題意,SKIPIF1<0因此SKIPIF1<0故選:A【點睛】本題考查了作差法比較大小,考查了學(xué)生綜合分析,數(shù)學(xué)運算能力,屬于基礎(chǔ)題3.(2022·江蘇宿遷·高一期中)若SKIPIF1<0且SKIPIF1<0,則下列不等式一定成立的是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】利用不等式的性質(zhì),通過舉特例結(jié)合作差法比較大小即可判斷各個選項正誤.【詳解】對于A,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,顯然A錯誤;對于B,∵SKIPIF1<0且SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即B正確;對于C:當(dāng)SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,顯然C錯誤;對于D:當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,顯然D錯誤;故選:B.4.(2022·江西·貴溪市實驗中學(xué)高三階段練習(xí)(文))若SKIPIF1<0,則SKIPIF1<0的最大值為(

)A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】化簡函數(shù),利用基本不等式求出最值,并驗證取等條件.【詳解】SKIPIF1<0,SKIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時取等號則SKIPIF1<0的最大值為SKIPIF1<0故選:C【點睛】本題考查基本不等式的應(yīng)用,考查學(xué)生計算能力,屬于中檔題.5.(2022·黑龍江·牡丹江市第三高級中學(xué)高三階段練習(xí))已知SKIPIF1<0為正實數(shù)且SKIPIF1<0,則SKIPIF1<0的最小值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.3【答案】D【分析】由題知SKIPIF1<0,再結(jié)合基本不等式求解即可.【詳解】解:因為SKIPIF1<0為正實數(shù)且SKIPIF1<0,所以SKIPIF1<0,所以,SKIPIF1<0因為SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時等號成立;所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時等號成立;故選:D6.(2022·全國·高三專題練習(xí))已知兩個正實數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最小值是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.8 D.3【答案】A【分析】根據(jù)題中條件,得到SKIPIF1<0,展開后根據(jù)基本不等式,即可得出結(jié)果.【詳解】因為正實數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時,等號成立.故選:SKIPIF1<0.【點睛】易錯點睛:利用基本不等式求最值時,要注意其必須滿足的三個條件:(1)“一正二定三相等”“一正”就是各項必須為正數(shù);(2)“二定”就是要求和的最小值,必須把構(gòu)成和的二項之積轉(zhuǎn)化成定值;要求積的最大值,則必須把構(gòu)成積的因式的和轉(zhuǎn)化成定值;(3)“三相等”是利用基本不等式求最值時,必須驗證等號成立的條件,若不能取等號則這個定值就不是所求的最值,這也是最容易發(fā)生錯誤的地方.7.(2022·全國·高一單元測試)已知正數(shù)SKIPIF1<0、SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最小值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】由SKIPIF1<0得SKIPIF1<0,再將代數(shù)式SKIPIF1<0與SKIPIF1<0相乘,利用基本不等式可求出SKIPIF1<0的最小值.【詳解】SKIPIF1<0,所以,SKIPIF1<0,則SKIPIF1<0,所以,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即當(dāng)SKIPIF1<0時,等號成立,因此,SKIPIF1<0的最小值為SKIPIF1<0,故選SKIPIF1<0.【點睛】本題考查利用基本不等式求最值,對代數(shù)式進行合理配湊,是解決本題的關(guān)鍵,屬于中等題.8.(2022·浙江·高一期中)已知實數(shù)SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值是(

)A.6 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】構(gòu)造SKIPIF1<0,利用均值不等式即得解【詳解】SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時等號成立故選:B【點睛】本題考查了均值不等式在最值問題中的應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算能力,屬于中檔題9.(2021·安徽合肥·高一期末)已知SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】運用乘1法,可得由x+y=(x+1)+y﹣1=[(x+1)+y]?(SKIPIF1<0)﹣1,化簡整理再由基本不等式即可得到最小值.【詳解】由x+y=(x+1)+y﹣1=[(x+1)+y]?1﹣1=[(x+1)+y]?2(SKIPIF1<0)﹣1=2(2SKIPIF1<01≥3+4SKIPIF1<07.當(dāng)且僅當(dāng)xSKIPIF1<0,y=4取得最小值7.故選C.【點睛】本題考查基本不等式的運用:求最值,注意乘1法和滿足的條件:一正二定三等,考查運算能力,屬于中檔題.10.(2022·黑龍江·哈爾濱市第一中學(xué)校高一階段練習(xí))下列說法正確的是(

)A.若SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0至少有一個大于2B.SKIPIF1<0C.若SKIPIF1<0,則SKIPIF1<0D.若SKIPIF1<0,則SKIPIF1<0【答案】A【分析】結(jié)合反證法、全稱量詞命題、不等式、函數(shù)解析式的求法等知識求得正確答案.【詳解】A選項,依題意,SKIPIF1<0且SKIPIF1<0,若SKIPIF1<0都不大于SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,與已知SKIPIF1<0矛盾,所以SKIPIF1<0至少有一個大于SKIPIF1<0,A選項正確.B選項,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以B選項錯誤.C選項,由于SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以C選項錯誤.D選項,依題意,SKIPIF1<0①,以SKIPIF1<0替換SKIPIF1<0得SKIPIF1<0②,由①②解得SKIPIF1<0,所以D選項錯誤.故選:A11.(2022·甘肅省會寧縣第一中學(xué)高一期中)若函數(shù)SKIPIF1<0在SKIPIF1<0處取最小值,則SKIPIF1<0等于(

)A.3 B.SKIPIF1<0 C.SKIPIF1<0 D.4【答案】A【分析】將函數(shù)SKIPIF1<0的解析式配湊為SKIPIF1<0,再利用基本不等式求出該函數(shù)的最小值,利用等號成立得出相應(yīng)的SKIPIF1<0值,可得出SKIPIF1<0的值.【詳解】當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0

SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,即當(dāng)SKIPIF1<0時,等號成立,因此,SKIPIF1<0,故選A.【點睛】本題考查基本不等式等號成立的條件,利用基本不等式要對代數(shù)式進行配湊,注意“一正、二定、三相等”這三個條件的應(yīng)用,考查計算能力,屬于中等題.12.(2015·湖南·高考真題(文))若實數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最小值為()A.SKIPIF1<0 B.2 C.SKIPIF1<0 D.4【答案】C【詳解】SKIPIF1<0,(當(dāng)且僅當(dāng)SKIPIF1<0時取等號),所以SKIPIF1<0的最小值為SKIPIF1<0,故選C.考點:基本不等式【名師點睛】基本不等式具有將“和式”轉(zhuǎn)化為“積式”和將“積式”轉(zhuǎn)化為“和式”的放縮功能,因此可以用在一些不等式的證明中,還可以用于求代數(shù)式的最值或取值范圍.如果條件等式中,同時含有兩個變量的和與積的形式,就可以直接利用基本不等式對兩個正數(shù)的和與積進行轉(zhuǎn)化,然后通過解不等式進行求解.13.(2022·山東·青島二中高一期中)十六世紀(jì)中葉,英國數(shù)學(xué)家雷科德在《礪智石》一書中首先把“=”作為等號使用,后來英國資學(xué)家哈利奧特首次使用“>”和“<”符號,并逐步被數(shù)學(xué)界接受志不等號的引入對不等式的發(fā)展景響深遠.已知a,b為非零實數(shù),且SKIPIF1<0;則下列結(jié)論正確的是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)各項不等式,利用作差法、特殊值,結(jié)合不等式性質(zhì)判斷正誤即可.【詳解】A:SKIPIF1<0,若SKIPIF1<0有SKIPIF1<0、SKIPIF1<0,故SKIPIF1<0,錯誤;B:SKIPIF1<0,若SKIPIF1<0有SKIPIF1<0、SKIPIF1<0,故SKIPIF1<0,錯誤;C:若SKIPIF1<0,則SKIPIF1<0,錯誤;D:SKIPIF1<0,故SKIPIF1<0,正確.故選:D14.(2022·福建·福州第十五中學(xué)高三階段練習(xí))已知SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】首先求得SKIPIF1<0及SKIPIF1<0的取值范圍,再把SKIPIF1<0轉(zhuǎn)化為關(guān)于SKIPIF1<0的代數(shù)式SKIPIF1<0,利用函數(shù)SKIPIF1<0的單調(diào)性去求SKIPIF1<0的取值范圍即可解決【詳解】由SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0則SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,SKIPIF1<0又SKIPIF1<0在SKIPIF1<0單調(diào)遞增,在SKIPIF1<0單調(diào)遞減SKIPIF1<0,SKIPIF1<0,SKIPIF1<0則SKIPIF1<0,即SKIPIF1<0故選:C15.(2021·山西·太原市第五十六中學(xué)校高一階段練習(xí))若正數(shù)SKIPIF1<0滿足SKIPIF1<0,當(dāng)SKIPIF1<0取得最小值時,SKIPIF1<0的值為()A.SKIPIF1<0 B.2 C.SKIPIF1<0 D.5【答案】B【分析】將方程變形SKIPIF1<0代入可得3x+4y=(3x+4y)(SKIPIF1<0)=SKIPIF1<0×3,然后利用基本不等式即可求解.【詳解】∵x+3y=5xy,x>0,y>0∴SKIPIF1<0∴3x+4y=(3x+4y)(SKIPIF1<0)=SKIPIF1<0×3SKIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0即x=2y=1時取等號,SKIPIF1<0的值為2.故答案為B.【點睛】本題考查了“乘1法”與基本不等式的性質(zhì),考查了推理能力與計算能力,屬于中檔題.解決二元的范圍或者最值問題,常用的方法有:不等式的應(yīng)用,二元化一元的應(yīng)用,線性規(guī)劃的應(yīng)用,等.16.(2022·全國·高三專題練習(xí))當(dāng)SKIPIF1<0時,不等式SKIPIF1<0恒成立,則SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】由題可得SKIPIF1<0,且SKIPIF1<0,利用基本不等式解答即可.【詳解】解:∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時取等號,∵當(dāng)SKIPIF1<0時,不等式SKIPIF1<0恒成立,∴只需SKIPIF1<0.∴SKIPIF1<0的取值范圍為:SKIPIF1<0.故選A.【點睛】本題主要考查基本不等式,解題的關(guān)鍵是得出SKIPIF1<0,屬于一般題.17.(2022·天津·靜海一中高一期中)已知正數(shù)SKIPIF1<0、SKIPIF1<0滿足SKIPIF1<0,若不等式SKIPIF1<0恒成立,則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由已知可得出SKIPIF1<0,將SKIPIF1<0與SKIPIF1<0相乘,利用基本不等式可求得SKIPIF1<0的最小值,即可得出實數(shù)SKIPIF1<0的取值范圍.【詳解】因為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,即SKIPIF1<0,SKIPIF1<0時等號成立.又SKIPIF1<0恒成立,所以SKIPIF1<0.故選:C.18.(2022·福建·莆田一中高一階段練習(xí))已知SKIPIF1<0,SKIPIF1<0,若不等式SKIPIF1<0恒成立,則實數(shù)SKIPIF1<0的最大值為(

)A.10 B.9 C.8 D.7【答案】C【解析】由已知可得SKIPIF1<0,即求SKIPIF1<0的最小值,由基本不等式可得答案.【詳解】因為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0即SKIPIF1<0等號成立,要使不等式恒成立,所以SKIPIF1<0所以實數(shù)SKIPIF1<0的最大值為8.故選:C.【點睛】易錯點睛:利用基本不等式求最值時,要注意其必須滿足的三個條件:(1)“一正二定三相等”“一正”就是各項必須為正數(shù);(2)“二定”就是要求和的最小值,必須把構(gòu)成和的二項之積轉(zhuǎn)化成定值;要求積的最大值,則必須把構(gòu)成積的因式的和轉(zhuǎn)化成定值;(3)“三相等”是利用基本不等式求最值時,必須驗證等號成立的條件,若不能取等號則這個定值就不是所求的最值,這也是最容易發(fā)生錯誤的地方.二、多選題19.(2022·全國·高一單元測試)下列命題為真命題的是(

)A.若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0 B.若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0C.若SKIPIF1<0,則SKIPIF1<0 D.若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0【答案】AD【分析】A.由不等式的性質(zhì)判斷;B.舉例判斷;C.由SKIPIF1<0判斷;D.作差判斷.【詳解】A.由不等式的性質(zhì)可知同向不等式相加,不等式方向不變,故正確;B.當(dāng)SKIPIF1<0時,SKIPIF1<0,故錯誤;C.當(dāng)SKIPIF1<0時,SKIPIF1<0故錯誤;D.SKIPIF1<0,因為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故正確;故選:AD20.(2022·河南省浚縣第一中學(xué)高一階段練習(xí))若正實數(shù)a,b滿足SKIPIF1<0則下列說法正確的是(

)A.a(chǎn)b有最大值SKIPIF1<0 B.SKIPIF1<0有最大值SKIPIF1<0C.SKIPIF1<0有最小值2 D.SKIPIF1<0有最大值SKIPIF1<0【答案】AB【解析】對A,根據(jù)基本不等式求SKIPIF1<0的最大值;對B,對SKIPIF1<0平方再利用基本不等式求最大值;對C,根據(jù)SKIPIF1<0再展開求解最小值;對D,對SKIPIF1<0平方再根據(jù)基本不等式求最值.【詳解】對A,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時取等號.故A正確.對B,SKIPIF1<0,故SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時取等號.故B正確.對C,SKIPIF1<0.當(dāng)且僅當(dāng)SKIPIF1<0時取等號.所以SKIPIF1<0有最小值4.故C錯誤.對D,SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0有最小值SKIPIF1<0.故D錯誤.故選:AB【點睛】本題主要考查了基本不等式求解最值的問題,需要根據(jù)所給形式進行合適的變形,再利用基本不等式.屬于中檔題.三、填空題21.(2022·山東·乳山市銀灘高級中學(xué)高一階段練習(xí))若實數(shù)SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的取值范圍為________.【答案】SKIPIF1<0【分析】設(shè)SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,再由不等式的性質(zhì)即可求解.【詳解】設(shè)SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0所以SKIPIF1<0.又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0所以SKIPIF1<0.故答案為:SKIPIF1<0.【點睛】關(guān)鍵點點睛:本題考查利用不等式的性質(zhì)求取值范圍,變形SKIPIF1<0是解題的關(guān)鍵,考查學(xué)生的運算求解能力,屬于基礎(chǔ)題.22.(2018·天津·高考真題(理))已知SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值為_____________.【答案】SKIPIF1<0【分析】由題意首先求得SKIPIF1<0的值,然后結(jié)合均值不等式的結(jié)論整理計算即可求得最終結(jié)果,注意等號成立的條件.【詳解】由SKIPIF1<0可知SKIPIF1<0,且:SKIPIF1<0,因為對于任意SKIPIF1<0,SKIPIF1<0恒成立,結(jié)合均值不等式的結(jié)論可得:SKIPIF1<0.當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時等號成立.綜上可得SKIPIF1<0的最小值為SKIPIF1<0.【點睛】在應(yīng)用基本不等式求最值時,要把握不等式成立的三個條件,就是“一正——各項均為正;二定——積或和為定值;三相等——等號能否取得”,若忽略了某個條件,就會出現(xiàn)錯誤.23.(2023·廣東·惠來縣第一中學(xué)高一期中)已知SKIPIF1<0,則SKIPIF1<0的最大值為________.【答案】1【分析】直接利用基本不等式求最大值.【詳解】SKIPIF1<0,則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0即SKIPIF1<0時取等號.故答案為:SKIPIF1<024.(2022·天津市第四中學(xué)高三期中)已知SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0的最小值為___________.【答案】SKIPIF1<0【分析】令SKIPIF1<0,SKIPIF1<0,將已知條件簡化為SKIPIF1<0;將SKIPIF1<0用SKIPIF1<0表示,分離常數(shù),再使用“乘1法”轉(zhuǎn)化后利用基本不等式即可求得最小值.【詳解】解:令SKIPIF1<0,SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0時取“SKIPIF1<0”,所以SKIPIF1<0的最小值為SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論