人教A版高中數(shù)學(xué)必修第二冊同步講義第09講 平面向量加、減、數(shù)乘運(yùn)算的坐標(biāo)表示(含解析)_第1頁
人教A版高中數(shù)學(xué)必修第二冊同步講義第09講 平面向量加、減、數(shù)乘運(yùn)算的坐標(biāo)表示(含解析)_第2頁
人教A版高中數(shù)學(xué)必修第二冊同步講義第09講 平面向量加、減、數(shù)乘運(yùn)算的坐標(biāo)表示(含解析)_第3頁
人教A版高中數(shù)學(xué)必修第二冊同步講義第09講 平面向量加、減、數(shù)乘運(yùn)算的坐標(biāo)表示(含解析)_第4頁
人教A版高中數(shù)學(xué)必修第二冊同步講義第09講 平面向量加、減、數(shù)乘運(yùn)算的坐標(biāo)表示(含解析)_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

第9課平面向量加、減、數(shù)乘運(yùn)算的坐標(biāo)表示目標(biāo)導(dǎo)航目標(biāo)導(dǎo)航課程標(biāo)準(zhǔn)課標(biāo)解讀平面向量加、減運(yùn)算的坐標(biāo)表示,掌握平面向量數(shù)乘運(yùn)算的坐標(biāo)表示.2.理解用坐標(biāo)表示的平面向量共線的條件.3.能根據(jù)平面向量的坐標(biāo),判斷向量是否共線.1、通過閱讀課本在平面向量加減運(yùn)算的基礎(chǔ)上,掌握坐標(biāo)系下的加減與數(shù)乘運(yùn)算,提升數(shù)學(xué)運(yùn)算的核心素養(yǎng).2、熟練運(yùn)用掌握向量的運(yùn)算性質(zhì),提升對平面向量共線的坐標(biāo)表示的理解與掌握,提升數(shù)學(xué)核心素養(yǎng).3、會(huì)利用坐標(biāo)法,理解和掌握兩個(gè)向量是否共線的判斷.知識精講知識精講知識點(diǎn)01平面向量加、減運(yùn)算的坐標(biāo)表示設(shè)a=(x1,y1),b=(x2,y2),數(shù)學(xué)公式文字語言表述向量加法a+b=(x1+x2,y1+y2)兩個(gè)向量和的坐標(biāo)分別等于這兩個(gè)向量相應(yīng)坐標(biāo)的和向量減法a-b=(x1-x2,y1-y2)兩個(gè)向量差的坐標(biāo)分別等于這兩個(gè)向量相應(yīng)坐標(biāo)的差已知點(diǎn)A(x1,y1),B(x2,y2),那么向量eq\o(AB,\s\up6(→))=(x2-x1,y2-y1),即任意一個(gè)向量的坐標(biāo)等于表示此向量的有向線段的終點(diǎn)的坐標(biāo)減去起點(diǎn)的坐標(biāo).【即學(xué)即練1】已知平面上三點(diǎn)的坐標(biāo)分別為A(-2,1),B(-1,3),C(3,4),求點(diǎn)D的坐標(biāo),使這四點(diǎn)為平行四邊形的四個(gè)頂點(diǎn).解析設(shè)點(diǎn)D的坐標(biāo)為(x,y),當(dāng)平行四邊形為ABCD時(shí),由eq\o(AB,\s\up6(→))=(1,2),eq\o(DC,\s\up6(→))=(3-x,4-y),且eq\o(AB,\s\up6(→))=eq\o(DC,\s\up6(→)),得D(2,2);當(dāng)平行四邊形為ACDB時(shí),由eq\o(AB,\s\up6(→))=(1,2),eq\o(CD,\s\up6(→))=(x-3,y-4),且eq\o(AB,\s\up6(→))=eq\o(CD,\s\up6(→)),得D(4,6);當(dāng)平行四邊形為ACBD時(shí),由eq\o(AC,\s\up6(→))=(5,3),eq\o(DB,\s\up6(→))=(-1-x,3-y),且eq\o(AC,\s\up6(→))=eq\o(DB,\s\up6(→)),得D(-6,0),故點(diǎn)D的坐標(biāo)為(2,2)或(4,6)或(-6,0).反思感悟坐標(biāo)形式下向量相等的條件及其應(yīng)用(1)條件:相等向量的對應(yīng)坐標(biāo)相等.(2)應(yīng)用:利用坐標(biāo)形式下向量相等的條件,可以建立相等關(guān)系,由此可以求出某些參數(shù)的值或點(diǎn)的坐標(biāo).知識點(diǎn)02平面向量數(shù)乘運(yùn)算的坐標(biāo)表示已知a=(x,y),則λa=(λx,λy),即實(shí)數(shù)與向量的積的坐標(biāo)等于用這個(gè)實(shí)數(shù)乘原來向量的相應(yīng)坐標(biāo).【即學(xué)即練2】已知向量a=(5,2),b=(-4,-3),若c滿足3a-2b+c=0,則c等于()A.(-23,-12) B.(23,12)C.(7,0) D.(-7,0)答案A解析由3a-2b+c=0,∴c=-3a+2b=-3(5,2)+2(-4,-3)=(-23,-12),∴c=(-23,-12).反思感悟平面向量坐標(biāo)運(yùn)算的技巧(1)若已知向量的坐標(biāo),則直接應(yīng)用兩個(gè)向量和、差及向量數(shù)乘的運(yùn)算法則進(jìn)行運(yùn)算.(2)若已知有向線段兩端點(diǎn)的坐標(biāo),則可先求出向量的坐標(biāo),然后再進(jìn)行向量的坐標(biāo)運(yùn)算.(3)向量的線性坐標(biāo)運(yùn)算可完全類比數(shù)的運(yùn)算進(jìn)行.知識點(diǎn)03平面向量共線的坐標(biāo)表示設(shè)a=(x1,y1),b=(x2,y2),其中b≠0.則a,b共線的充要條件是存在實(shí)數(shù)λ,使a=λb.如果用坐標(biāo)表示,可寫為(x1,y1)=λ(x2,y2),當(dāng)且僅當(dāng)x1y2-x2y1=0時(shí),向量a,b(b≠0)共線.【即學(xué)即練3】(多選)下列向量組中,能作為平面內(nèi)所有向量基底的是()A.a(chǎn)=(-2,3),b=(4,6)B.a(chǎn)=(2,3),b=(3,2)C.a(chǎn)=(1,-2),b=(7,14)D.a(chǎn)=(-3,2),b=(6,-4)答案ABC解析能作為平面內(nèi)的基底,則兩向量a與b不平行,A選項(xiàng),(-2)×6-3×4=-24≠0,∴a與b不平行;B選項(xiàng),2×2-3×3=4-9=-5≠0,∴a與b不平行;C選項(xiàng),1×14-(-2)×7=28≠0,∴a與b不平行;D選項(xiàng),(-3)×(-4)-2×6=12-12=0,∴a∥b.反思感悟向量共線的判定應(yīng)充分利用向量共線定理或向量共線的坐標(biāo)表示進(jìn)行判斷,特別是利用向量共線的坐標(biāo)表示進(jìn)行判斷時(shí),要注意坐標(biāo)之間的搭配.能力拓展能力拓展考法01向量加減的坐標(biāo)運(yùn)算【典例1】.平面向量的坐標(biāo)運(yùn)算已知SKIPIF1<0,則SKIPIF1<0______,SKIPIF1<0_________.結(jié)論:兩個(gè)向量和與差的坐標(biāo)分別等于_______.【答案】

SKIPIF1<0;

SKIPIF1<0;

這兩個(gè)向量相應(yīng)坐標(biāo)的和與差.【詳解】解:(1)由題得SKIPIF1<0SKIPIF1<0;(2)SKIPIF1<0SKIPIF1<0;(3)兩個(gè)向量和與差的坐標(biāo)分別等于這兩個(gè)向量相應(yīng)坐標(biāo)的和與差.故答案為:SKIPIF1<0;SKIPIF1<0;這兩個(gè)向量相應(yīng)坐標(biāo)的和與差.【變式訓(xùn)練】已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則點(diǎn)M的坐標(biāo)為______.【答案】SKIPIF1<0【詳解】解:由題意得SKIPIF1<0,所以SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0解得SKIPIF1<0故點(diǎn)M的坐標(biāo)為SKIPIF1<0.故答案為:SKIPIF1<0考法02向量數(shù)乘的坐標(biāo)運(yùn)算【典例2】已知向量SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0__________.【答案】SKIPIF1<0【詳解】由題意得:SKIPIF1<0,解得:SKIPIF1<0.故答案為:-1【變式訓(xùn)練】設(shè)向量SKIPIF1<0,SKIPIF1<0,則“SKIPIF1<0與SKIPIF1<0同向”的充要條件是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0同向;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0反向.故選:A.考法03向量共線的坐標(biāo)表示【典例3】已知SKIPIF1<0(1)當(dāng)k為何值時(shí),SKIPIF1<0與SKIPIF1<0共線?(2)若SKIPIF1<0,且A,B,C三點(diǎn)共線,求m的值.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【詳解】(1)因?yàn)镾KIPIF1<0所以SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0與SKIPIF1<0共線,所以SKIPIF1<0,解得SKIPIF1<0;(2)因?yàn)镾KIPIF1<0所以SKIPIF1<0,SKIPIF1<0,因?yàn)锳,B,C三點(diǎn)共線,所以SKIPIF1<0,解得SKIPIF1<0.【變式訓(xùn)練】已知SKIPIF1<0,則(

)A.SKIPIF1<0三點(diǎn)共線 B.SKIPIF1<0三點(diǎn)共線C.SKIPIF1<0三點(diǎn)共線 D.SKIPIF1<0三點(diǎn)共線【答案】C【詳解】對于A:不存在實(shí)數(shù)SKIPIF1<0,使得SKIPIF1<0,故SKIPIF1<0三點(diǎn)不共線;對于B:SKIPIF1<0不存在實(shí)數(shù)SKIPIF1<0,使得SKIPIF1<0,故SKIPIF1<0三點(diǎn)不共線;對于C:SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0三點(diǎn)共線;對于D:不存在實(shí)數(shù)SKIPIF1<0,使得SKIPIF1<0,故SKIPIF1<0三點(diǎn)不共線;故選:C分層提分分層提分題組A基礎(chǔ)過關(guān)練1.已知向量SKIPIF1<0,SKIPIF1<0,則向量SKIPIF1<0的坐標(biāo)為(

)A.(0,4,-11) B.(12,16,7)C.(0,16,-7) D.(12,16,-7)【答案】A【詳解】SKIPIF1<0,故選:A2.已知向量SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故選:A3.已知向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.若SKIPIF1<0,則實(shí)數(shù)m的值為(

)A.2 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】由題意可知,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0得SKIPIF1<0.故選:C.4.如圖,在平行四邊形SKIPIF1<0中,點(diǎn)SKIPIF1<0在線段SKIPIF1<0上,且SKIPIF1<0(SKIPIF1<0),若SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)且SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.3 C.SKIPIF1<0 D.4【答案】B【詳解】方法1:在平行四邊形SKIPIF1<0中,因?yàn)镾KIPIF1<0SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,(平面向量基本定理的應(yīng)用)又∵SKIPIF1<0,∴SKIPIF1<0,解得SKIPIF1<0,故選:B.方法2:如圖,以A為坐標(biāo)原點(diǎn),SKIPIF1<0所在直線為SKIPIF1<0軸建立平面直角坐標(biāo)系,則SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0則SKIPIF1<0,又∵SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0即:SKIPIF1<0∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又∵SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0由②得SKIPIF1<0,將其代入①得SKIPIF1<0,故選:B.5.(多選)已知向量SKIPIF1<0,SKIPIF1<0,則(

).A.SKIPIF1<0與SKIPIF1<0共線,則SKIPIF1<0B.SKIPIF1<0時(shí),SKIPIF1<0與SKIPIF1<0的夾角為銳角C.SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0方向上的投影向量為SKIPIF1<0D.SKIPIF1<0的最小值為1【答案】CD【詳解】對于A,SKIPIF1<0與SKIPIF1<0共線,則SKIPIF1<0,SKIPIF1<0.故A錯(cuò)誤;對于B,SKIPIF1<0時(shí),SKIPIF1<0與SKIPIF1<0共線同向,夾角不為銳角,故B錯(cuò)誤;對于C,SKIPIF1<0在SKIPIF1<0方向上的投影向量為SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,故C正確;對于D.SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)取等號,故D正確.故選:CD.6.(多選)已知向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0(m,SKIPIF1<0),則SKIPIF1<0可能是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】ABD【詳解】由題意得SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,整理得SKIPIF1<0.對于選項(xiàng)A,SKIPIF1<0,故選項(xiàng)A正確;對于選項(xiàng)B,SKIPIF1<0,故選項(xiàng)B正確;對于選項(xiàng)C,SKIPIF1<0,故選項(xiàng)C錯(cuò)誤;對于選項(xiàng)D,SKIPIF1<0,故選項(xiàng)D正確,故選:SKIPIF1<0.7.在SKIPIF1<0中,CA=CB=1,SKIPIF1<0,若CM與線段AB交于點(diǎn)P,且滿足SKIPIF1<0,(SKIPIF1<0,SKIPIF1<0),且SKIPIF1<0,則SKIPIF1<0的最大值為______.【答案】2【詳解】如圖所示:設(shè)SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,CB=1,則SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,則SKIPIF1<0,所以有SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0(SKIPIF1<0,SKIPIF1<0),所以SKIPIF1<0,解得SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)不等式取等號.則SKIPIF1<0的最大值為2.故答案為:28.已知向量SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0______.【答案】3【詳解】因?yàn)橄蛄縎KIPIF1<0且SKIPIF1<0,所以SKIPIF1<0解得SKIPIF1<0,故答案為:39.已知向量SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0_____.【答案】SKIPIF1<0或SKIPIF1<0【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0或4.故答案為:-1或4.10.已知SKIPIF1<0,SKIPIF1<0,向量SKIPIF1<0,SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的最小值為_____.【答案】SKIPIF1<0【詳解】因?yàn)镾KIPIF1<0,則SKIPIF1<0,由基本不等式可得SKIPIF1<0,可得SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),等號成立,故SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<0.11.已知點(diǎn)SKIPIF1<0,SKIPIF1<0,向量SKIPIF1<0,若SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0等于___________.【答案】SKIPIF1<0【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,則SKIPIF1<0,.故答案為:SKIPIF1<0.12.已知SKIPIF1<0.(1)若SKIPIF1<0,求實(shí)數(shù)SKIPIF1<0的值;(2)若SKIPIF1<0與SKIPIF1<0夾角為銳角,求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】(1)2(2)SKIPIF1<0且SKIPIF1<0【詳解】(1)若SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0.(2)若SKIPIF1<0與SKIPIF1<0夾角為銳角,設(shè)該夾角為SKIPIF1<0,則SKIPIF1<0,故只需SKIPIF1<0,解得SKIPIF1<0且SKIPIF1<0與SKIPIF1<0不同向共線,即SKIPIF1<0,所以實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0且SKIPIF1<0.題組B能力提升練1.已知向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是線段AB的中點(diǎn),則SKIPIF1<0點(diǎn)的坐標(biāo)是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】因?yàn)辄c(diǎn)SKIPIF1<0是線段AB的中點(diǎn),所以SKIPIF1<0,設(shè)SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以點(diǎn)SKIPIF1<0的坐標(biāo)是SKIPIF1<0.故選:B2.(多選)下列說法正確的是(

)A.已知向量SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0∥SKIPIF1<0,則SKIPIF1<0B.若向量SKIPIF1<0,SKIPIF1<0共線,則SKIPIF1<0C.已知正方形ABCD的邊長為1,若點(diǎn)M滿足SKIPIF1<0,則SKIPIF1<0D.若O是SKIPIF1<0的外心,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的值為SKIPIF1<0【答案】CD【詳解】解:對于A,因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0∥SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,故錯(cuò)誤;對于B,因?yàn)橄蛄縎KIPIF1<0,SKIPIF1<0共線,當(dāng)向量SKIPIF1<0,SKIPIF1<0同向時(shí),則有SKIPIF1<0;當(dāng)向量SKIPIF1<0,SKIPIF1<0反向時(shí),則有SKIPIF1<0,故錯(cuò)誤;對于C,因?yàn)镾KIPIF1<0,所以SKIPIF1<0為SKIPIF1<0的三等分點(diǎn)中靠近SKIPIF1<0的點(diǎn),所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故正確;對于D,因?yàn)镺是SKIPIF1<0的外心,所以SKIPIF1<0(SKIPIF1<0為SKIPIF1<0的外接圓半徑),又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,①同理可得SKIPIF1<0,②由①-②可得:SKIPIF1<0,即有SKIPIF1<0,故正確.故選:CD.3.(多選)如圖,正方形SKIPIF1<0的邊長為SKIPIF1<0,動(dòng)點(diǎn)SKIPIF1<0在正方形內(nèi)部及邊上運(yùn)動(dòng),SKIPIF1<0,則下列結(jié)論正確的有(

)A.點(diǎn)SKIPIF1<0在線段SKIPIF1<0上時(shí),SKIPIF1<0為定值B.點(diǎn)SKIPIF1<0在線段SKIPIF1<0上時(shí),SKIPIF1<0為定值C.SKIPIF1<0的最大值為SKIPIF1<0D.使SKIPIF1<0的SKIPIF1<0點(diǎn)軌跡長度為SKIPIF1<0【答案】AC【詳解】以點(diǎn)SKIPIF1<0為坐標(biāo)原點(diǎn),SKIPIF1<0、SKIPIF1<0所在直線分別為SKIPIF1<0、SKIPIF1<0軸建立如下圖所示的平面直角坐標(biāo)系,設(shè)點(diǎn)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,當(dāng)點(diǎn)SKIPIF1<0在線段SKIPIF1<0上時(shí),SKIPIF1<0,SKIPIF1<0,故A正確;當(dāng)點(diǎn)SKIPIF1<0在線段SKIPIF1<0上時(shí),SKIPIF1<0不是定值,SKIPIF1<0不為定值,故B錯(cuò)誤;由SKIPIF1<0得SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故當(dāng)SKIPIF1<0時(shí),即當(dāng)點(diǎn)SKIPIF1<0與點(diǎn)SKIPIF1<0重合時(shí),SKIPIF1<0取得最大值SKIPIF1<0,故C正確;由SKIPIF1<0得SKIPIF1<0,直線SKIPIF1<0交SKIPIF1<0軸于點(diǎn)SKIPIF1<0,交SKIPIF1<0軸于點(diǎn)SKIPIF1<0,所以,使SKIPIF1<0的SKIPIF1<0點(diǎn)軌跡為線段SKIPIF1<0,且SKIPIF1<0,故D錯(cuò)誤.故選:AC.4.已知向量SKIPIF1<0在基底SKIPIF1<0下的坐標(biāo)為SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則向量SKIPIF1<0,則SKIPIF1<0在基底SKIPIF1<0下的坐標(biāo)為SKIPIF1<0為________.【答案】SKIPIF1<0【詳解】由已知在基底SKIPIF1<0下,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故答案為:SKIPIF1<0,5.已知向量SKIPIF1<0,SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0________.【答案】0【詳解】解:向量SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0.故答案為:0.6.SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0______.【答案】1【詳解】由題意,得SKIPIF1<0,則SKIPIF1<0.故答案為:1.7.已知向量SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0__________.【答案】SKIPIF1<0【詳解】由題設(shè)SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.故答案為:SKIPIF1<08.已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0的夾角為____________.【答案】SKIPIF1<0##SKIPIF1<0##SKIPIF1<0【詳解】設(shè)SKIPIF1<0,SKIPIF1<0的夾角為θ,則由SKIPIF1<0,SKIPIF1<0,SKIPIF1<0可得SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0故SKIPIF1<0,SKIPIF1<0的夾角為SKIPIF1<0.故答案為:SKIPIF1<09.在2022年2月4日舉行的北京冬奧會(huì)開幕式上,貫穿全場的雪花元素為觀眾帶來了一場視覺盛宴,象征各國、各地區(qū)代表團(tuán)的“小雪花”匯聚成一朵代表全人類“一起走向未來”的“大雪花”的意境驚艷了全世界(如圖①),順次連接圖中各頂點(diǎn)可近似得到正六邊形SKIPIF1<0(如圖②).己知正六邊形的邊長為1,點(diǎn)M滿足SKIPIF1<0,則SKIPIF1<0________________;若點(diǎn)P是線段SKIPIF1<0上的動(dòng)點(diǎn)(包括端點(diǎn)),則SKIPIF1<0的最小值是________________.

圖①

圖②【答案】

SKIPIF1<0##SKIPIF1<0

SKIPIF1<0##SKIPIF1<0【詳解】建立如圖所示的平面直角坐標(biāo)系,則SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的最小值為SKIPIF1<0故答案為:SKIPIF1<0;SKIPIF1<0.10.已知SKIPIF1<0,SKIPIF1<0.(1)當(dāng)SKIPIF1<0為何值時(shí),SKIPIF1<0與SKIPIF1<0共線;(2)若SKIPIF1<0,SKIPIF1<0且SKIPIF1<0三點(diǎn)共線,求SKIPIF1<0的值.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)解:SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0與SKIPIF1<0共線,SKIPIF1<0,即SKIPIF1<0;(2)解:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0、SKIPIF1<0、SKIPIF1<0三點(diǎn)共線,SKIPIF1<0,即SKIPIF1<0.題組C培優(yōu)拔尖練1.在平面內(nèi),定點(diǎn)SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,動(dòng)點(diǎn)P,M滿足SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最大值是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】由題意知SKIPIF1<0,即點(diǎn)SKIPIF1<0到SKIPIF1<0三點(diǎn)的距離相等,可得SKIPIF1<0為SKIPIF1<0的外心,又由SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,同理可得SKIPIF1<0,所以SKIPIF1<0為SKIPIF1<0的垂心,所以SKIPIF1<0的外心與垂心重合,所以SKIPIF1<0為正三角形,且SKIPIF1<0為SKIPIF1<0的中心,因?yàn)镾KIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0為邊長為SKIPIF1<0的正三角形,如圖所示,以SKIPIF1<0為原點(diǎn)建立直角坐標(biāo)系,則SKIPIF1<0,因?yàn)镾KIPIF1<0,可得設(shè)SKIPIF1<0,其中SKIPIF1<0,又因?yàn)镾KIPIF1<0,即SKIPIF1<0為SKIPIF1<0的中點(diǎn),可得SKIPIF1<0,所以SKIPIF1<0.即SKIPIF1<0的最大值為SKIPIF1<0.故選:B.2.已知SKIPIF1<0,SKIPIF1<0,向量SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】由題意SKIPIF1<0,SKIPIF1<0得:SKIPIF1<0,即有SKIPIF1<0,如圖示,設(shè)SKIPIF1<0,故不妨設(shè)SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,故可得SKIPIF1<0,所以C點(diǎn)在以AB為直徑的圓上運(yùn)動(dòng),在SKIPIF1<0中,SKIPIF1<0,AB的中點(diǎn)為SKIPIF1<0,則以AB為直徑的圓的方程為SKIPIF1<0,故SKIPIF1<0的最大值為SKIPIF1<0,最小值為SKIPIF1<0,即SKIPIF1<0的取值范圍是SKIPIF1<0,故選:B3.向量SKIPIF1<0,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】解:∵SKIPIF1<0,設(shè)SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,故選:B.4.根據(jù)畢達(dá)哥拉斯定理,以直角三角形的三條邊為邊長作正方形,從斜邊上作出的正方形的面積正好等于在兩直角邊上作出的正方形面積之和.現(xiàn)在對直角三角形SKIPIF1<0按上述操作作圖后,得如圖所示的圖形,若SKIPIF1<0,則SKIPIF1<0____________.【答案】SKIPIF1<0##-0.5【詳解】如圖,以A為原點(diǎn),分別以SKIPIF1<0為SKIPIF1<0軸建立平面直角坐標(biāo)系,設(shè)正方形SKIPIF1<0的邊長為SKIPIF1<0,則正方形SKIPIF1<0的邊長為SKIPIF1<0,正方形SKIPIF1<0邊長為SKIPIF1<0可知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0則SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0又SKIPIF1<0,SKIPIF1<0即SKIPIF1<0,即SKIPIF1<0,化簡得SKIPIF1<0故答案為:SKIPIF1<05.設(shè)SKIPIF1<0為不共線的向量,滿足SKIPIF1<0,且SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的最大值為________.【答案】324【詳解】令SKIPIF1<0,又因?yàn)镾KIPIF1<0,即SKIPIF1<0,則點(diǎn)C為SKIPIF1<0的外心,因?yàn)镾KIPIF1<0,設(shè)SKIPIF1<0,不妨取SKIPIF1<0則點(diǎn)SKIPIF1<0在圓SKIPIF1<0上,由SKIPIF1<0,代入坐標(biāo),SKIPIF1<0,解得SKIPIF1<0,聯(lián)立SKIPIF1<0和SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0即SKIPIF1<0時(shí)取“=”.故SKIPIF1<0,于是SKIPIF1<0SKIPIF1<0.故答案為:3246.如圖,在邊長為SKIPIF1<0的正方形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0分別是邊SKIPIF1<0,SKIPIF1<0上的兩個(gè)動(dòng)點(diǎn),且SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點(diǎn),SKIPIF1<0,則SKIPIF1<0的最大值是______.【答案】SKIPIF1<0【詳解】以SKIPIF1<0為坐標(biāo)原點(diǎn),以SKIPIF1<0,SKIPIF1<0所在直線為SKIPIF1<0,SKIPIF1<0軸建立平面直角坐標(biāo)系,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.由SKIPIF1<0可得SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論