(英文版學(xué)習(xí)課件)High-Dimensional OLAP:A Minimal Cubing Approach_第1頁
(英文版學(xué)習(xí)課件)High-Dimensional OLAP:A Minimal Cubing Approach_第2頁
(英文版學(xué)習(xí)課件)High-Dimensional OLAP:A Minimal Cubing Approach_第3頁
(英文版學(xué)習(xí)課件)High-Dimensional OLAP:A Minimal Cubing Approach_第4頁
(英文版學(xué)習(xí)課件)High-Dimensional OLAP:A Minimal Cubing Approach_第5頁
已閱讀5頁,還剩32頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

High-DimensionalOLAP:

AMinimalCubingApproachpurposeHowtocubinginHigh-DimensinaldatawarehousesefficientlyThispaperproposeanovelmethodthatcomputesathinlayerofthedatacubetogetherwithassociatedvalue-listindicesIntroductionDatacubehasbeenplayinganessentialroleintheimplementationoffastOLAPoperationTherehavebeenmanyefficientcubecomputationalgorithmsproposedMultiwayarrayaggregationBUCH-cubingStar-cubingIntroduction(cont.)Traditionaldatawarehousemayhave10dimensions,butmorethat109

tuplesButforbioinformatics,textprocessing,dataarehighindimensionality,over100,1000dimensionsbutonlymediuminsize,egaround106

tuples.ExistingmethodistoocostlyincomputationtimeandstoragespacetohighdimensionalOLAPIntroduction(cont.)newmethodcalledshellfragmentVerticallypartitionsahighdimensionaldatasetintoasetofdisjointlowdimensionaldatasetsForeachfragment,computeitlocaldatacubeofflineWhenquery,assemblethesefragmentonlineAnalysisCurseofDimensionalityAhighdimensionaldatacuberequiresmassivememoryanddiskspaceCurrentalgorithmsareunabletomaterializethefullcubeundersuchconditionsIcebergCubeComputingonlythecuboidcellswhosecountorotheraggregatessatisfyingthecondition:HAVINGCOUNT(*)>=minsupMotivationOnlyasmallportionofcubecellsmaybe“abovethewater’’inasparsecubeOnlycalculate“interesting”data—dataabovecertainthresholdProblemofIcebergCubeFirst,ifahigh-dimensionalcellhasthesupportalreadypassingthecebergthreshold,itcannotbeprunedbytheicebergconditionandwillstillgenerateahugenumberofcells.abasecuboidcell:“(a1;a2;:::;a60):5"(i.e.,withcount5)willstillgenerate260icebergcubecells.ProblemofIcebergCube(cont.)Second,itisdifficulttosetupanappropriateicebergthreshold.Atoolowthresholdwillstillgenerateahugecube,butatoohighonemayinvalidatemanyusefulapplications.Third,anicebergcubecannotbeincrementallyup-dated.Samesituationhappensinthedwarf,quotientcubeSubstantialI/OoverheadforaccessingafullmaterializeddatacubeQueryordermightbeincompatiblewithaI/OproblemCuboidsarestoredondiskinsomefixedorder,thatordermightbeincompatiblewithparticularequery.CurrentpartialsolutionComputeathincubeshellCubeidwithMaybe3dimensionsorlessina60Existingalotofproblems:StillneedtocomputealotofcubeidDonotsupportOLAPover4dimensionsCannotsupportdrillingComputationModelSemi-onlinecomputatinmodelwithcertainpre-processingObservation,anOLAPquery: ignoremanydimensions(i.e.,treatingthemasirrelevant)fixsomedimensions(e.g.,usingqueryconstantsasinstantiations)leaveonlyafewtobemanipulated(fordrilling,pivoting,etc.).OLAPoperationsPrecomputationofshellFragmentsInvertedIndexLemma1TheinvertedindextableusesthesameamountofstoragespaceastheoriginaldatabaseShellFragmentsAllthedimensionsofadatasetarepartitionedintoindependentgroups,calledfragments.Foreachfragment,wecomputethecompletelocaldatacubewhileretainingtheinvertedindices.(A1……A60),fragmentsofsize3,140cubeids,whilecubeshellofsizeof336050cubeids.Example(A,B,C)and(D,E)Foreachfragment,wecomputethecompletedatacubebyintersectingthetid-lists{a1b2*}CuboidDELemma2GivenadatabaseofTtuplesandDdimensions,theamountofmemoryneededtostoretheshellfragmentsofsizeFisO(T(D/F)(2F-1))ComputingotherMeasuresSum,averageID_MeasurearrayAlgorithmforShellFragmentComputationOnlineQueryComputationPointQueryseeksaspecialcuboidcellintheoriginaldataspace.Inann-dimensionaldatacube(A1;A2;:::;An),apointqueryisintheformof(a1;a2;:::;an:M)MistheinquiredmeasureFordimensionsthatareirrelevantoraggregated,onecanuse*asitsvalue.SubcubeQueryseeksasetofcuboidcellsintheoriginaldataspaceItisonewhereatleastoneoftherelevantdimensionsinthequeryisinquired,Marked?.<a2;?;c1;*;?:count()>QueryProcessing<a1;a2;:::;an:M>.Eachaihas3possiblevalues:aninstantiatedvalue,Aggregate*,inquire?.Stepsforinstantiateddimensionalgatheralltheinstantiatedai'sifthereareanyexaminetheshellfragmentpartitionstocheckwhichai'sareinthesamefragments.retrievethetid-listsTheobtainedtid-listsareintersectedtoderivetheinstantiatedbasetable.Iftherearenoinquireddimensions,stopotherwiseStepsforinquireddimensionsForeachinquireddimension,weretrieveallitspossiblevaluesandtheirassociatedtid-lists.theyareintersectedwiththeinstantiatedbasetabletoformthelocalbasecuboidoftheinquiredandinstantiateddimensions.AnycubingalgorithmcanbeemployedtocomputethelocaldatacubeShellFragmentGrouping&SizeGroupingdomain-specificknowledgecanbeusedforbettergrouping.Size(F)IfFistoosmall,thespacerequiredtostorethefragmentcubeswillbesmallbutthetimeneededtocomputequeriesonlinewillbelong.2<=F<=4Bottom-UpComputation(BUC)BUC(Beyer&Ramakrishnan,SIGMOD’99)Bottom-upvs.top-down?—dependingonhowyouviewit!Aprioriproperty:Aggregatethedata, thenmovetothenextlevelIfminsupisnotmet,stop!Ifminsup=1TcomputefullCUBE!PartitioningUsually,entiredatasetcan’tfitinmainmemorySortdistinctvalues,partitionintoblocksthatfitContinueprocessingOptimizationsPartiti

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論