版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
四川省成都市溫江區(qū)踏水校2024屆中考五模數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.下列圖形中,哪一個(gè)是圓錐的側(cè)面展開圖?A. B. C. D.2.如圖:A、B、C、D四點(diǎn)在一條直線上,若AB=CD,下列各式表示線段AC錯(cuò)誤的是()A.AC=AD﹣CD B.AC=AB+BCC.AC=BD﹣AB D.AC=AD﹣AB3.二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,下列結(jié)論正確的是()A.a(chǎn)<0 B.b2-4ac<0 C.當(dāng)-1<x<3時(shí),y>0 D.-=14.下列各式屬于最簡(jiǎn)二次根式的有()A. B. C. D.5.實(shí)數(shù)﹣5.22的絕對(duì)值是()A.5.22 B.﹣5.22 C.±5.22 D.6.我省2013年的快遞業(yè)務(wù)量為1.2億件,受益于電子商務(wù)發(fā)展和法治環(huán)境改善等多重因素,快遞業(yè)務(wù)迅猛發(fā)展,2012年增速位居全國(guó)第一.若2015年的快遞業(yè)務(wù)量達(dá)到2.5億件,設(shè)2012年與2013年這兩年的平均增長(zhǎng)率為x,則下列方程正確的是()A.1.2(1+x)=2.5B.1.2(1+2x)=2.5C.1.2(1+x)2=2.5D.1.2(1+x)+1.2(1+x)2=2.57.如圖,在正方形網(wǎng)格中建立平面直角坐標(biāo)系,若A0,2,BA.1,-2 B.1,-1 C.2,-1 D.2,18.在數(shù)軸上到原點(diǎn)距離等于3的數(shù)是()A.3 B.﹣3 C.3或﹣3 D.不知道9.如圖是某幾何體的三視圖及相關(guān)數(shù)據(jù),則該幾何體的全面積是()A.15π B.24π C.20π D.10π10.若關(guān)于x的一元二次方程x2-2x-k=0沒有實(shí)數(shù)根,則k的取值范圍是()A.k>-1 B.k≥-1 C.k<-1 D.k≤-1二、填空題(共7小題,每小題3分,滿分21分)11.現(xiàn)有一張圓心角為108°,半徑為40cm的扇形紙片,小紅剪去圓心角為θ的部分扇形紙片后,將剩下的紙片制作成一個(gè)底面半徑為10cm的圓錐形紙帽(接縫處不重疊),則剪去的扇形紙片的圓心角θ為_____.12.若y=,則x+y=.13.已知x、y是實(shí)數(shù)且滿足x2+xy+y2﹣2=0,設(shè)M=x2﹣xy+y2,則M的取值范圍是_____.14.若一個(gè)棱柱有7個(gè)面,則它是______棱柱.15.如果點(diǎn)、是二次函數(shù)是常數(shù)圖象上的兩點(diǎn),那么______填“”、“”或“”16.若反比例函數(shù)y=的圖象位于第一、三象限,則正整數(shù)k的值是_____.17.在一次射擊比賽中,某運(yùn)動(dòng)員前7次射擊共中62環(huán),如果他要打破89環(huán)(10次射擊)的記錄,那么第8次射擊他至少要打出_____環(huán)的成績(jī).三、解答題(共7小題,滿分69分)18.(10分)在東營(yíng)市中小學(xué)標(biāo)準(zhǔn)化建設(shè)工程中,某學(xué)校計(jì)劃購(gòu)進(jìn)一批電腦和電子白板,經(jīng)過市場(chǎng)考察得知,購(gòu)買1臺(tái)電腦和2臺(tái)電子白板需要3.5萬元,購(gòu)買2臺(tái)電腦和1臺(tái)電子白板需要2.5萬元.求每臺(tái)電腦、每臺(tái)電子白板各多少萬元?根據(jù)學(xué)校實(shí)際,需購(gòu)進(jìn)電腦和電子白板共30臺(tái),總費(fèi)用不超過30萬元,但不低于28萬元,請(qǐng)你通過計(jì)算求出有幾種購(gòu)買方案,哪種方案費(fèi)用最低.19.(5分)在下列的網(wǎng)格圖中.每個(gè)小正方形的邊長(zhǎng)均為1個(gè)單位,在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)試在圖中作出△ABC以A為旋轉(zhuǎn)中心,沿順時(shí)針方向旋轉(zhuǎn)90°后的圖形△AB1C1;(2)若點(diǎn)B的坐標(biāo)為(-3,5),試在圖中畫出直角坐標(biāo)系,并標(biāo)出A、C兩點(diǎn)的坐標(biāo);(3)根據(jù)(2)中的坐標(biāo)系作出與△ABC關(guān)于原點(diǎn)對(duì)稱的圖形△A2B2C2,并標(biāo)出B2、C2兩點(diǎn)的坐標(biāo).20.(8分)某校對(duì)六至九年級(jí)學(xué)生圍繞“每天30分鐘的大課間,你最喜歡的體育活動(dòng)項(xiàng)目是什么?(只寫一項(xiàng))”的問題,對(duì)在校學(xué)生進(jìn)行隨機(jī)抽樣調(diào)查,從而得到一組數(shù)據(jù).如圖是根據(jù)這組數(shù)據(jù)繪制的條形統(tǒng)計(jì)圖,請(qǐng)結(jié)合統(tǒng)計(jì)圖回答下列問題:該校對(duì)多少學(xué)生進(jìn)行了抽樣調(diào)查?本次抽樣調(diào)查中,最喜歡籃球活動(dòng)的有多少?占被調(diào)查人數(shù)的百分比是多少?若該校九年級(jí)共有200名學(xué)生,如圖是根據(jù)各年級(jí)學(xué)生人數(shù)占全校學(xué)生總?cè)藬?shù)的百分比繪制的扇形統(tǒng)計(jì)圖,請(qǐng)估計(jì)全校六至九年級(jí)學(xué)生中最喜歡跳繩活動(dòng)的人數(shù)約為多少?21.(10分)在平面直角坐標(biāo)系xOy中,若拋物線頂點(diǎn)A的橫坐標(biāo)是,且與y軸交于點(diǎn),點(diǎn)P為拋物線上一點(diǎn).求拋物線的表達(dá)式;若將拋物線向下平移4個(gè)單位,點(diǎn)P平移后的對(duì)應(yīng)點(diǎn)為如果,求點(diǎn)Q的坐標(biāo).22.(10分)如圖,△ABC內(nèi)接與⊙O,AB是直徑,⊙O的切線PC交BA的延長(zhǎng)線于點(diǎn)P,OF∥BC交AC于AC點(diǎn)E,交PC于點(diǎn)F,連接AF.判斷AF與⊙O的位置關(guān)系并說明理由;若⊙O的半徑為4,AF=3,求AC的長(zhǎng).23.(12分)如圖,⊙O是△ABC的外接圓,BC為⊙O的直徑,點(diǎn)E為△ABC的內(nèi)心,連接AE并延長(zhǎng)交⊙O于D點(diǎn),連接BD并延長(zhǎng)至F,使得BD=DF,連接CF、BE.(1)求證:DB=DE;(2)求證:直線CF為⊙O的切線;(3)若CF=4,求圖中陰影部分的面積.24.(14分)我省有關(guān)部門要求各中小學(xué)要把“陽(yáng)光體育”寫入課表,為了響應(yīng)這一號(hào)召,某校圍繞著“你最喜歡的體育活動(dòng)項(xiàng)目是什么?(只寫一項(xiàng))”的問題,對(duì)在校學(xué)生進(jìn)行了隨機(jī)抽樣調(diào)查,從而得到一組數(shù)據(jù),如圖1是根據(jù)這組數(shù)據(jù)繪制的條形統(tǒng)計(jì)圖,請(qǐng)結(jié)合統(tǒng)計(jì)圖回答下列問題:該校對(duì)多少名學(xué)生進(jìn)行了抽樣調(diào)查?本次抽樣調(diào)查中,最喜歡足球活動(dòng)的有多少人?占被調(diào)查人數(shù)的百分比是多少?若該校九年級(jí)共有400名學(xué)生,圖2是根據(jù)各年級(jí)學(xué)生人數(shù)占全校學(xué)生總?cè)藬?shù)的百分比繪制的扇形統(tǒng)計(jì)圖,請(qǐng)你估計(jì)全校學(xué)生中最喜歡籃球活動(dòng)的人數(shù)約為多少?
參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、B【解題分析】
根據(jù)圓錐的側(cè)面展開圖的特點(diǎn)作答.【題目詳解】A選項(xiàng):是長(zhǎng)方體展開圖.B選項(xiàng):是圓錐展開圖.C選項(xiàng):是棱錐展開圖.D選項(xiàng):是正方體展開圖.故選B.【題目點(diǎn)撥】考查了幾何體的展開圖,注意圓錐的側(cè)面展開圖是扇形.2、C【解題分析】
根據(jù)線段上的等量關(guān)系逐一判斷即可.【題目詳解】A、∵AD-CD=AC,∴此選項(xiàng)表示正確;B、∵AB+BC=AC,∴此選項(xiàng)表示正確;C、∵AB=CD,∴BD-AB=BD-CD,∴此選項(xiàng)表示不正確;D、∵AB=CD,∴AD-AB=AD-CD=AC,∴此選項(xiàng)表示正確.故答案選:C.【題目點(diǎn)撥】本題考查了線段上兩點(diǎn)間的距離及線段的和、差的知識(shí),解題的關(guān)鍵是找出各線段間的關(guān)系.3、D【解題分析】試題分析:根據(jù)二次函數(shù)的圖象和性質(zhì)進(jìn)行判斷即可.解:∵拋物線開口向上,∴∴A選項(xiàng)錯(cuò)誤,∵拋物線與x軸有兩個(gè)交點(diǎn),∴∴B選項(xiàng)錯(cuò)誤,由圖象可知,當(dāng)-1<x<3時(shí),y<0∴C選項(xiàng)錯(cuò)誤,由拋物線的軸對(duì)稱性及與x軸的兩個(gè)交點(diǎn)分別為(-1,0)和(3,0)可知對(duì)稱軸為即-=1,∴D選項(xiàng)正確,故選D.4、B【解題分析】
先根據(jù)二次根式的性質(zhì)化簡(jiǎn),再根據(jù)最簡(jiǎn)二次根式的定義判斷即可.【題目詳解】A選項(xiàng):,故不是最簡(jiǎn)二次根式,故A選項(xiàng)錯(cuò)誤;B選項(xiàng):是最簡(jiǎn)二次根式,故B選項(xiàng)正確;C選項(xiàng):,故不是最簡(jiǎn)二次根式,故本選項(xiàng)錯(cuò)誤;D選項(xiàng):,故不是最簡(jiǎn)二次根式,故D選項(xiàng)錯(cuò)誤;
故選:B.【題目點(diǎn)撥】考查了對(duì)最簡(jiǎn)二次根式的定義的理解,能理解最簡(jiǎn)二次根式的定義是解此題的關(guān)鍵.5、A【解題分析】
根據(jù)絕對(duì)值的性質(zhì)進(jìn)行解答即可.【題目詳解】實(shí)數(shù)﹣5.1的絕對(duì)值是5.1.故選A.【題目點(diǎn)撥】本題考查的是實(shí)數(shù)的性質(zhì),熟知絕對(duì)值的性質(zhì)是解答此題的關(guān)鍵.6、C【解題分析】試題解析:設(shè)2015年與2016年這兩年的平均增長(zhǎng)率為x,由題意得:1.2(1+x)2=2.5,故選C.7、C【解題分析】
根據(jù)A點(diǎn)坐標(biāo)即可建立平面直角坐標(biāo).【題目詳解】解:由A(0,2),B(1,1)可知原點(diǎn)的位置,
建立平面直角坐標(biāo)系,如圖,
∴C(2,-1)
故選:C.【題目點(diǎn)撥】本題考查平面直角坐標(biāo)系,解題的關(guān)鍵是建立直角坐標(biāo)系,本題屬于基礎(chǔ)題型.8、C【解題分析】
根據(jù)數(shù)軸上到原點(diǎn)距離等于3的數(shù)為絕對(duì)值是3的數(shù)即可求解.【題目詳解】絕對(duì)值為3的數(shù)有3,-3.故答案為C.【題目點(diǎn)撥】本題考查數(shù)軸上距離的意義,解題的關(guān)鍵是知道數(shù)軸上的點(diǎn)到原點(diǎn)的距離為絕對(duì)值.9、B【解題分析】解:根據(jù)三視圖得到該幾何體為圓錐,其中圓錐的高為4,母線長(zhǎng)為5,圓錐底面圓的直徑為6,所以圓錐的底面圓的面積=π×()2=9π,圓錐的側(cè)面積=×5×π×6=15π,所以圓錐的全面積=9π+15π=24π.故選B.點(diǎn)睛:本題考查了圓錐的計(jì)算:圓錐的側(cè)面展開圖為扇形,扇形的半徑等于圓錐的母線長(zhǎng),扇形的弧長(zhǎng)等于圓錐底面圓的周長(zhǎng).也考查了三視圖.10、C【解題分析】試題分析:由題意可得根的判別式,即可得到關(guān)于k的不等式,解出即可.由題意得,解得故選C.考點(diǎn):一元二次方程的根的判別式點(diǎn)評(píng):解答本題的關(guān)鍵是熟練掌握一元二次方程,當(dāng)時(shí),方程有兩個(gè)不相等實(shí)數(shù)根;當(dāng)時(shí),方程的兩個(gè)相等的實(shí)數(shù)根;當(dāng)時(shí),方程沒有實(shí)數(shù)根.二、填空題(共7小題,每小題3分,滿分21分)11、18°【解題分析】試題分析:根據(jù)圓錐的展開圖的圓心角計(jì)算法則可得:扇形的圓心角=1040考點(diǎn):圓錐的展開圖12、1.【解題分析】試題解析:∵原二次根式有意義,∴x-3≥0,3-x≥0,∴x=3,y=4,∴x+y=1.考點(diǎn):二次根式有意義的條件.13、≤M≤6【解題分析】
把原式的xy變?yōu)?xy-xy,根據(jù)完全平方公式特點(diǎn)化簡(jiǎn),然后由完全平方式恒大于等于0,得到xy的范圍;再把原式中的xy變?yōu)?2xy+3xy,同理得到xy的另一個(gè)范圍,求出兩范圍的公共部分,然后利用不等式的基本性質(zhì)求出2-2xy的范圍,最后利用已知x2+xy+y2-2=0表示出x2+y2,代入到M中得到M=2-2xy,2-2xy的范圍即為M的范圍.【題目詳解】由得:即所以由得:即所以∴∴不等式兩邊同時(shí)乘以?2得:,即兩邊同時(shí)加上2得:即∵∴∴則M的取值范圍是≤M≤6.故答案為:≤M≤6.【題目點(diǎn)撥】此題考查了完全平方公式,以及不等式的基本性質(zhì),解題時(shí)技巧性比較強(qiáng),對(duì)已知的式子進(jìn)行了三次恒等變形,前兩次利用拆項(xiàng)法拼湊完全平方式,最后一次變形后整體代入確定出M關(guān)于xy的式子,從而求出M的范圍.要求學(xué)生熟練掌握完全平方公式的結(jié)構(gòu)特點(diǎn):兩數(shù)的平方和加上或減去它們乘積的2倍等于兩數(shù)和或差的平方.14、5【解題分析】分析:根據(jù)n棱柱的特點(diǎn),由n個(gè)側(cè)面和兩個(gè)底面構(gòu)成,可判斷.詳解:由題意可知:7-2=5.故答案為5.點(diǎn)睛:此題主要考查了棱柱的概念,根據(jù)棱柱的底面和側(cè)面的關(guān)系求解是解題關(guān)鍵.15、【解題分析】
根據(jù)二次函數(shù)解析式可知函數(shù)圖象對(duì)稱軸是x=0,且開口向上,分析可知兩點(diǎn)均在對(duì)稱軸左側(cè)的圖象上;接下來,結(jié)合二次函數(shù)的性質(zhì)可判斷對(duì)稱軸左側(cè)圖象的增減性,【題目詳解】解:二次函數(shù)的函數(shù)圖象對(duì)稱軸是x=0,且開口向上,∴在對(duì)稱軸的左側(cè)y隨x的增大而減小,∵-3>-4,∴>.故答案為>.【題目點(diǎn)撥】本題考查了二次函數(shù)的圖像和數(shù)形結(jié)合的數(shù)學(xué)思想.16、1.【解題分析】
由反比例函數(shù)的性質(zhì)列出不等式,解出k的范圍,在這個(gè)范圍寫出k的整數(shù)解則可.【題目詳解】解:∵反比例函數(shù)的圖象在一、三象限,∴2﹣k>0,即k<2.又∵k是正整數(shù),∴k的值是:1.故答案為:1.【題目點(diǎn)撥】本題考查了反比例函數(shù)的性質(zhì):當(dāng)k>0時(shí),圖象分別位于第一、三象限;當(dāng)k<0時(shí),圖象分別位于第二、四象限.17、8【解題分析】為了使第8次的環(huán)數(shù)最少,可使后面的2次射擊都達(dá)到最高環(huán)數(shù),即10環(huán).設(shè)第8次射擊環(huán)數(shù)為x環(huán),根據(jù)題意列出一元一次不等式62+x+2×10>89解之,得x>7x表示環(huán)數(shù),故x為正整數(shù)且x>7,則x的最小值為8即第8次至少應(yīng)打8環(huán).點(diǎn)睛:本題考查的是一元一次不等式的應(yīng)用.解決此類問題的關(guān)鍵是在理解題意的基礎(chǔ)上,建立與之相應(yīng)的解決問題的“數(shù)學(xué)模型”——不等式,再由不等式的相關(guān)知識(shí)確定問題的答案.三、解答題(共7小題,滿分69分)18、(1)每臺(tái)電腦0.5萬元,每臺(tái)電子白板1.5萬元(2)見解析【解題分析】解:(1)設(shè)每臺(tái)電腦x萬元,每臺(tái)電子白板y萬元,根據(jù)題意得:,解得:。答:每臺(tái)電腦0.5萬元,每臺(tái)電子白板1.5萬元。(2)設(shè)需購(gòu)進(jìn)電腦a臺(tái),則購(gòu)進(jìn)電子白板(30-a)臺(tái),則,解得:,即a=15,16,17。故共有三種方案:方案一:購(gòu)進(jìn)電腦15臺(tái),電子白板15臺(tái).總費(fèi)用為萬元;方案二:購(gòu)進(jìn)電腦16臺(tái),電子白板14臺(tái).總費(fèi)用為萬元;方案三:購(gòu)進(jìn)電腦17臺(tái),電子白板13臺(tái).總費(fèi)用為萬元?!喾桨溉M(fèi)用最低。(1)設(shè)電腦、電子白板的價(jià)格分別為x,y元,根據(jù)等量關(guān)系:“1臺(tái)電腦+2臺(tái)電子白板=3.5萬元”,“2臺(tái)電腦+1臺(tái)電子白板=2.5萬元”,列方程組求解即可。(2)設(shè)計(jì)方案題一般是根據(jù)題意列出不等式組,求不等式組的整數(shù)解。設(shè)購(gòu)進(jìn)電腦x臺(tái),電子白板有(30-x)臺(tái),然后根據(jù)題目中的不等關(guān)系“總費(fèi)用不超過30萬元,但不低于28萬元”列不等式組解答。19、(1)作圖見解析;(2)如圖所示,點(diǎn)A的坐標(biāo)為(0,1),點(diǎn)C的坐標(biāo)為(-3,1);(3)如圖所示,點(diǎn)B2的坐標(biāo)為(3,-5),點(diǎn)C2的坐標(biāo)為(3,-1).【解題分析】
(1)分別作出點(diǎn)B個(gè)點(diǎn)C旋轉(zhuǎn)后的點(diǎn),然后順次連接可以得到;(2)根據(jù)點(diǎn)B的坐標(biāo)畫出平面直角坐標(biāo)系;(3)分別作出點(diǎn)A、點(diǎn)B、點(diǎn)C關(guān)于原點(diǎn)對(duì)稱的點(diǎn),然后順次連接可以得到.【題目詳解】(1)△A如圖所示;(2)如圖所示,A(0,1),C(﹣3,1);(3)△如圖所示,(3,﹣5),(3,﹣1).20、(1)50(2)36%(3)160【解題分析】
(1)根據(jù)條形圖的意義,將各組人數(shù)依次相加即可得到答案;(2)根據(jù)條形圖可直接得到最喜歡籃球活動(dòng)的人數(shù),除以(1)中的調(diào)查總?cè)藬?shù)即可得出其所占的百分比;(3)用樣本估計(jì)總體,先求出九年級(jí)占全???cè)藬?shù)的百分比,然后求出全校的總?cè)藬?shù);再根據(jù)最喜歡跳繩活動(dòng)的學(xué)生所占的百分比,繼而可估計(jì)出全校學(xué)生中最喜歡跳繩活動(dòng)的人數(shù).【題目詳解】(1)該校對(duì)名學(xué)生進(jìn)行了抽樣調(diào)查.本次調(diào)查中,最喜歡籃球活動(dòng)的有人,,∴最喜歡籃球活動(dòng)的人數(shù)占被調(diào)查人數(shù)的.(3),人,人.答:估計(jì)全校學(xué)生中最喜歡跳繩活動(dòng)的人數(shù)約為人.【題目點(diǎn)撥】本題考查的是條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的綜合運(yùn)用.讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計(jì)圖能清楚地表示出每個(gè)項(xiàng)目的數(shù)據(jù);扇形統(tǒng)計(jì)圖中各部分占總體的百分比之和為1,直接反映部分占總體的百分比大?。?1、為;點(diǎn)Q的坐標(biāo)為或.【解題分析】
依據(jù)拋物線的對(duì)稱軸方程可求得b的值,然后將點(diǎn)B的坐標(biāo)代入線可求得c的值,即可求得拋物線的表達(dá)式;由平移后拋物線的頂點(diǎn)在x軸上可求得平移的方向和距離,故此,然后由點(diǎn),軸可得到點(diǎn)Q和P關(guān)于x對(duì)稱,可求得點(diǎn)Q的縱坐標(biāo),將點(diǎn)Q的縱坐標(biāo)代入平移后的解析式可求得對(duì)應(yīng)的x的值,則可得到點(diǎn)Q的坐標(biāo).【題目詳解】拋物線頂點(diǎn)A的橫坐標(biāo)是,,即,解得..將代入得:,拋物線的解析式為.拋物線向下平移了4個(gè)單位.平移后拋物線的解析式為,.,點(diǎn)O在PQ的垂直平分線上.又軸,點(diǎn)Q與點(diǎn)P關(guān)于x軸對(duì)稱.點(diǎn)Q的縱坐標(biāo)為.將代入得:,解得:或.點(diǎn)Q的坐標(biāo)為或.【題目點(diǎn)撥】本題主要考查的是二次函數(shù)的綜合應(yīng)用,解答本題主要應(yīng)用了待定系數(shù)法求二次函數(shù)的解析式、二次函數(shù)的平移規(guī)律、線段垂直平分線的性質(zhì),發(fā)現(xiàn)點(diǎn)Q與點(diǎn)P關(guān)于x軸對(duì)稱,從而得到點(diǎn)Q的縱坐標(biāo)是解題的關(guān)鍵.22、解:(1)AF與圓O的相切.理由為:如圖,連接OC,∵PC為圓O切線,∴CP⊥OC.∴∠OCP=90°.∵OF∥BC,∴∠AOF=∠B,∠COF=∠OCB.∵OC=OB,∴∠OCB=∠B.∴∠AOF=∠COF.∵在△AOF和△COF中,OA=OC,∠AOF=∠COF,OF=OF,∴△AOF≌△COF(SAS).∴∠OAF=∠OCF=90°.∴AF為圓O的切線,即AF與⊙O的位置關(guān)系是相切.(2)∵△AOF≌△COF,∴∠AOF=∠COF.∵OA=OC,∴E為AC中點(diǎn),即AE=CE=AC,OE⊥AC.∵OA⊥AF,∴在Rt△AOF中,OA=4,AF=3,根據(jù)勾股定理得:OF=1.∵S△AOF=?OA?AF=?OF?AE,∴AE=.∴AC=2AE=.【解題分析】試題分析:(1)連接OC,先證出∠3=∠2,由SAS證明△OAF≌△OCF,得對(duì)應(yīng)角相等∠OAF=∠OCF,再根據(jù)切線的性質(zhì)得出∠OCF=90°,證出∠OAF=90°,即可得出結(jié)論;(2)先由勾股定理求出OF,再由三角形的面積求出AE,根據(jù)垂徑定理得出AC=2AE.試題解析:(1)連接OC,如圖所示:∵AB是⊙O直徑,∴∠BCA=90°,∵OF∥BC,∴∠AEO=90°,∠1=∠2,∠B=∠3,∴OF⊥AC,∵OC=OA,∴∠B=∠1,∴∠3=∠2,在△OAF和△OCF中,,∴△OAF≌△OCF(SAS),∴∠OAF=∠OCF,∵PC是⊙O的切線,∴∠OCF=90°,∴∠OAF=90°,∴FA⊥OA,∴AF是⊙O的切線;(2)∵⊙O的半徑為4,AF=3,∠OAF=90°,∴OF==1∵FA⊥OA,OF⊥AC,∴AC=2AE,△OAF的面積=AF?OA=OF?AE,∴3×4=1×AE,解得:AE=,∴AC=2AE=.考點(diǎn):1.切線的判定與性質(zhì);2.勾股定理;3.相似三角形的判定與性質(zhì).23、(1)證明見解析;(2)證明見解析;(3)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度餐飲資產(chǎn)全權(quán)經(jīng)營(yíng)與管理權(quán)轉(zhuǎn)讓合同3篇
- 2025年幼兒園特色課程研發(fā)與推廣承包經(jīng)營(yíng)協(xié)議范本4篇
- 二零二五版美發(fā)公司股東股權(quán)投資退出與轉(zhuǎn)讓協(xié)議4篇
- 二零二五年度網(wǎng)絡(luò)安全風(fēng)險(xiǎn)評(píng)估合同主體職責(zé)與標(biāo)的范圍3篇
- 二零二五版跨國(guó)電子商務(wù)代理銷售合同范本2篇
- 2025年度儲(chǔ)售煤場(chǎng)租賃合同(含倉(cāng)儲(chǔ)設(shè)備租賃)4篇
- 2025年教室租用合同范本:含教育信息化服務(wù)條款3篇
- 2024版農(nóng)產(chǎn)品收購(gòu)與銷售合同2篇
- 2025年度家居建材代理采購(gòu)合同模板4篇
- 2025年度文化場(chǎng)所租賃合同范本4篇
- GB/T 12914-2008紙和紙板抗張強(qiáng)度的測(cè)定
- GB/T 1185-2006光學(xué)零件表面疵病
- ps6000自動(dòng)化系統(tǒng)用戶操作及問題處理培訓(xùn)
- 家庭教養(yǎng)方式問卷(含評(píng)分標(biāo)準(zhǔn))
- 城市軌道交通安全管理課件(完整版)
- 線纜包覆擠塑模設(shè)計(jì)和原理
- TSG ZF001-2006 安全閥安全技術(shù)監(jiān)察規(guī)程
- 部編版二年級(jí)語文下冊(cè)《蜘蛛開店》
- 鍋爐升降平臺(tái)管理
- 200m3╱h凈化水處理站設(shè)計(jì)方案
- 個(gè)體化健康教育記錄表格模板1
評(píng)論
0/150
提交評(píng)論