泰興市濟川中學2024屆中考數(shù)學最后沖刺模擬試卷含解析_第1頁
泰興市濟川中學2024屆中考數(shù)學最后沖刺模擬試卷含解析_第2頁
泰興市濟川中學2024屆中考數(shù)學最后沖刺模擬試卷含解析_第3頁
泰興市濟川中學2024屆中考數(shù)學最后沖刺模擬試卷含解析_第4頁
泰興市濟川中學2024屆中考數(shù)學最后沖刺模擬試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

泰興市濟川中學2024屆中考數(shù)學最后沖刺模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.在3,0,-2,-2四個數(shù)中,最小的數(shù)是()A.3 B.0 C.-2 D.-22.如圖,點D在△ABC的邊AC上,要判斷△ADB與△ABC相似,添加一個條件,不正確的是()A.∠ABD=∠C B.∠ADB=∠ABC C. D.3.為了節(jié)約水資源,某市準備按照居民家庭年用水量實行階梯水價,水價分檔遞增,計劃使第一檔、第二檔和第三檔的水價分別覆蓋全市居民家庭的80%,15%和5%.為合理確定各檔之間的界限,隨機抽查了該市5萬戶居民家庭上一年的年用水量(單位:m1),繪制了統(tǒng)計圖,如圖所示.下面有四個推斷:①年用水量不超過180m1的該市居民家庭按第一檔水價交費;②年用水量不超過240m1的該市居民家庭按第三檔水價交費;③該市居民家庭年用水量的中位數(shù)在150~180m1之間;④該市居民家庭年用水量的眾數(shù)約為110m1.其中合理的是()A.①③ B.①④ C.②③ D.②④4.如圖,已知△ADE是△ABC繞點A逆時針旋轉(zhuǎn)所得,其中點D在射線AC上,設旋轉(zhuǎn)角為α,直線BC與直線DE交于點F,那么下列結論不正確的是()A.∠BAC=α B.∠DAE=α C.∠CFD=α D.∠FDC=α5.如圖,在熱氣球C處測得地面A、B兩點的俯角分別為30°、45°,熱氣球C的高度CD為100米,點A、D、B在同一直線上,則AB兩點的距離是()A.200米 B.200米 C.220米 D.100米6.如圖,AC是⊙O的直徑,弦BD⊥AO于E,連接BC,過點O作OF⊥BC于F,若BD=8cm,AE=2cm,則OF的長度是()A.3cm B.cm C.2.5cm D.cm7.如圖所示的幾何體,它的左視圖與俯視圖都正確的是()A. B. C. D.8.方程有兩個實數(shù)根,則k的取值范圍是().A.k≥1 B.k≤1 C.k>1 D.k<19.如圖所示的幾何體的主視圖是()A. B. C. D.10.若kb<0,則一次函數(shù)的圖象一定經(jīng)過()A.第一、二象限 B.第二、三象限 C.第三、四象限 D.第一、四象限二、填空題(本大題共6個小題,每小題3分,共18分)11.一個正多邊形的一個外角為30°,則它的內(nèi)角和為_____.12.化簡代數(shù)式(x+1+)÷,正確的結果為_____.13.如圖,在菱形ABCD中,于E,,,則菱形ABCD的面積是______.14.已知b是a,c的比例中項,若a=4,c=16,則b=________.15.如圖,以點為圓心的兩個同心圓中,大圓的弦是小圓的切線,點是切點,則劣弧AB的長為.(結果保留)16.將一副三角尺如圖所示疊放在一起,則的值是.三、解答題(共8題,共72分)17.(8分)在平面直角坐標系中,關于的一次函數(shù)的圖象經(jīng)過點,且平行于直線.(1)求該一次函數(shù)表達式;(2)若點Q(x,y)是該一次函數(shù)圖象上的點,且點Q在直線的下方,求x的取值范圍.18.(8分)如圖,Rt△ABC中,∠C=90°,⊙O是Rt△ABC的外接圓,過點C作⊙O的切線交BA的延長線于點E,BD⊥CE于點D,連接DO交BC于點M.(1)求證:BC平分∠DBA;(2)若,求的值.19.(8分)已知關于的方程有兩個實數(shù)根.求的取值范圍;若,求的值;20.(8分)如圖,有四張背面相同的卡片A、B、C、D,卡片的正面分別印有正三角形、平行四邊形、圓、正五邊形(這些卡片除圖案不同外,其余均相同).把這四張卡片背面向上洗勻后,進行下列操作:若任意抽取其中一張卡片,抽到的卡片既是中心對稱圖形又是軸對稱圖形的概率是;若任意抽出一張不放回,然后再從余下的抽出一張.請用樹狀圖或列表表示摸出的兩張卡片所有可能的結果,求抽出的兩張卡片的圖形是中心對稱圖形的概率.21.(8分)為響應國家的“一帶一路”經(jīng)濟發(fā)展戰(zhàn)略,樹立品牌意識,我市質(zhì)檢部門對A、B、C、D四個廠家生產(chǎn)的同種型號的零件共2000件進行合格率檢測,通過檢測得出C廠家的合格率為95%,并根據(jù)檢測數(shù)據(jù)繪制了如圖1、圖2兩幅不完整的統(tǒng)計圖.抽查D廠家的零件為件,扇形統(tǒng)計圖中D廠家對應的圓心角為;抽查C廠家的合格零件為件,并將圖1補充完整;通過計算說明合格率排在前兩名的是哪兩個廠家;若要從A、B、C、D四個廠家中,隨機抽取兩個廠家參加德國工業(yè)產(chǎn)品博覽會,請用“列表法”或“畫樹形圖”的方法求出(3)中兩個廠家同時被選中的概率.22.(10分)P是⊙O內(nèi)一點,過點P作⊙O的任意一條弦AB,我們把PA?PB的值稱為點P關于⊙O的“冪值”(1)⊙O的半徑為6,OP=1.①如圖1,若點P恰為弦AB的中點,則點P關于⊙O的“冪值”為_____;②判斷當弦AB的位置改變時,點P關于⊙O的“冪值”是否為定值,若是定值,證明你的結論;若不是定值,求點P關于⊙0的“冪值”的取值范圍;(2)若⊙O的半徑為r,OP=d,請參考(1)的思路,用含r、d的式子表示點P關于⊙O的“冪值”或“冪值”的取值范圍_____;(3)在平面直角坐標系xOy中,C(1,0),⊙C的半徑為3,若在直線y=x+b上存在點P,使得點P關于⊙C的“冪值”為6,請直接寫出b的取值范圍_____.23.(12分)計算:(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2)24.在?ABCD中,過點D作DE⊥AB于點E,點F在CD上,CF=AE,連接BF,AF.(1)求證:四邊形BFDE是矩形;(2)若AF平分∠BAD,且AE=3,DE=4,求tan∠BAF的值.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解題分析】

根據(jù)比較實數(shù)大小的方法進行比較即可.根據(jù)正數(shù)都大于0,負數(shù)都小于0,兩個負數(shù)絕對值大的反而小即可求解.【題目詳解】因為正數(shù)大于負數(shù),兩個負數(shù)比較大小,絕對值較大的數(shù)反而較小,所以-2<-2所以最小的數(shù)是-2,故選C.【題目點撥】此題主要考查了實數(shù)的大小的比較,正數(shù)都大于0,負數(shù)都小于0,兩個負數(shù)絕對值大的反而?。?、C【解題分析】

由∠A是公共角,利用有兩角對應相等的三角形相似,即可得A與B正確;又由兩組對應邊的比相等且夾角對應相等的兩個三角形相似,即可得D正確,繼而求得答案,注意排除法在解選擇題中的應用.【題目詳解】∵∠A是公共角,∴當∠ABD=∠C或∠ADB=∠ABC時,△ADB∽△ABC(有兩角對應相等的三角形相似),故A與B正確,不符合題意要求;當AB:AD=AC:AB時,△ADB∽△ABC(兩組對應邊的比相等且夾角對應相等的兩個三角形相似),故D正確,不符合題意要求;AB:BD=CB:AC時,∠A不是夾角,故不能判定△ADB與△ABC相似,故C錯誤,符合題意要求,故選C.3、B【解題分析】

利用條形統(tǒng)計圖結合中位數(shù)和中位數(shù)的定義分別分析得出答案.【題目詳解】①由條形統(tǒng)計圖可得:年用水量不超過180m1的該市居民家庭一共有(0.25+0.75+1.5+1.0+0.5)=4(萬),

×100%=80%,故年用水量不超過180m1的該市居民家庭按第一檔水價交費,正確;

②∵年用水量超過240m1的該市居民家庭有(0.15+0.15+0.05)=0.15(萬),

∴×100%=7%≠5%,故年用水量超過240m1的該市居民家庭按第三檔水價交費,故此選項錯誤;

③∵5萬個數(shù)據(jù)的中間是第25000和25001的平均數(shù),

∴該市居民家庭年用水量的中位數(shù)在120-150之間,故此選項錯誤;

④該市居民家庭年用水量為110m1有1.5萬戶,戶數(shù)最多,該市居民家庭年用水量的眾數(shù)約為110m1,因此正確,

故選B.【題目點撥】此題主要考查了頻數(shù)分布直方圖以及中位數(shù)和眾數(shù)的定義,正確利用條形統(tǒng)計圖獲取正確信息是解題關鍵.4、D【解題分析】

利用旋轉(zhuǎn)不變性即可解決問題.【題目詳解】∵△DAE是由△BAC旋轉(zhuǎn)得到,

∴∠BAC=∠DAE=α,∠B=∠D,

∵∠ACB=∠DCF,

∴∠CFD=∠BAC=α,

故A,B,C正確,

故選D.【題目點撥】本題考查旋轉(zhuǎn)的性質(zhì),解題的關鍵是熟練掌握旋轉(zhuǎn)不變性解決問題,屬于中考??碱}型.5、D【解題分析】

在熱氣球C處測得地面B點的俯角分別為45°,BD=CD=100米,再在Rt△ACD中求出AD的長,據(jù)此即可求出AB的長.【題目詳解】∵在熱氣球C處測得地面B點的俯角分別為45°,∴BD=CD=100米,∵在熱氣球C處測得地面A點的俯角分別為30°,∴AC=2×100=200米,∴AD==100米,∴AB=AD+BD=100+100=100(1+)米,故選D.【題目點撥】本題考查了解直角三角形的應用--仰角、俯角問題,要求學生能借助仰角構造直角三角形并解直角三角形.6、D【解題分析】分析:根據(jù)垂徑定理得出OE的長,進而利用勾股定理得出BC的長,再利用相似三角形的判定和性質(zhì)解答即可.詳解:連接OB,∵AC是⊙O的直徑,弦BD⊥AO于E,BD=1cm,AE=2cm.在Rt△OEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2解得:OE=3,∴OB=3+2=5,∴EC=5+3=1.在Rt△EBC中,BC=.∵OF⊥BC,∴∠OFC=∠CEB=90°.∵∠C=∠C,∴△OFC∽△BEC,∴,即,解得:OF=.故選D.點睛:本題考查了垂徑定理,關鍵是根據(jù)垂徑定理得出OE的長.7、D【解題分析】試題分析:該幾何體的左視圖是邊長分別為圓的半徑和直徑的矩形,俯視圖是邊長分別為圓的直徑和半徑的矩形,故答案選D.考點:D.8、D【解題分析】當k=1時,原方程不成立,故k≠1,當k≠1時,方程為一元二次方程.∵此方程有兩個實數(shù)根,∴,解得:k≤1.綜上k的取值范圍是k<1.故選D.9、A【解題分析】

找到從正面看所得到的圖形即可.【題目詳解】解:從正面可看到從左往右2列一個長方形和一個小正方形,故選A.【題目點撥】本題考查了三視圖的知識,主視圖是從物體的正面看得到的視圖.10、D【解題分析】

根據(jù)k,b的取值范圍確定圖象在坐標平面內(nèi)的位置關系,從而求解.【題目詳解】∵kb<0,∴k、b異號。①當k>0時,b<0,此時一次函數(shù)y=kx+b的圖象經(jīng)過第一、三、四象限;②當k<0時,b>0,此時一次函數(shù)y=kx+b的圖象經(jīng)過第一、二、四象限;綜上所述,當kb<0時,一次函數(shù)y=kx+b的圖象一定經(jīng)過第一、四象限。故選:D【題目點撥】此題考查一次函數(shù)圖象與系數(shù)的關系,解題關鍵在于判斷圖象的位置關系二、填空題(本大題共6個小題,每小題3分,共18分)11、1800°【解題分析】試題分析:這個正多邊形的邊數(shù)為=12,所以這個正多邊形的內(nèi)角和為(12﹣2)×180°=1800°.故答案為1800°.考點:多邊形內(nèi)角與外角.12、2x【解題分析】

根據(jù)分式的運算法則計算即可求解.【題目詳解】(x+1+)÷===2x.故答案為2x.【題目點撥】本題考查了分式的混合運算,熟知分式的混合運算順序及運算法則是解答本題的關鍵.13、【解題分析】

根據(jù)題意可求AD的長度,即可得CD的長度,根據(jù)菱形ABCD的面積=CD×AE,可求菱形ABCD的面積.【題目詳解】∵sinD=∴∴AD=11∵四邊形ABCD是菱形∴AD=CD=11∴菱形ABCD的面積=11×8=96cm1.故答案為:96cm1.【題目點撥】本題考查了菱形的性質(zhì),解直角三角形,熟練運用菱形性質(zhì)解決問題是本題的關鍵.14、±8【解題分析】

根據(jù)比例中項的定義即可求解.【題目詳解】∵b是a,c的比例中項,若a=4,c=16,∴b2=ac=4×16=64,∴b=±8,故答案為±8【題目點撥】此題考查了比例中項的定義,如果作為比例線段的內(nèi)項是兩條相同的線段,即a∶b=b∶c或,那么線段b叫做線段a、c的比例中項.15、8π.【解題分析】試題分析:因為AB為切線,P為切點,劣弧AB所對圓心角考點:勾股定理;垂徑定理;弧長公式.16、【解題分析】試題分析:∵∠BAC=∠ACD=90°,∴AB∥CD.∴△ABE∽△DCE.∴.∵在Rt△ACB中∠B=45°,∴AB=AC.∵在RtACD中,∠D=30°,∴.∴.三、解答題(共8題,共72分)17、(1);(2).【解題分析】

(1)由題意可設該一次函數(shù)的解析式為:,將點M(4,7)代入所設解析式求出b的值即可得到一次函數(shù)的解析式;(2)根據(jù)直線上的點Q(x,y)在直線的下方可得2x-1<3x+2,解不等式即得結果.【題目詳解】解:(1)∵一次函數(shù)平行于直線,∴可設該一次函數(shù)的解析式為:,∵直線過點M(4,7),∴8+b=7,解得b=-1,∴一次函數(shù)的解析式為:y=2x-1;(2)∵點Q(x,y)是該一次函數(shù)圖象上的點,∴y=2x-1,又∵點Q在直線的下方,如圖,∴2x-1<3x+2,解得x>-3.【題目點撥】本題考查了待定系數(shù)法求一次函數(shù)的解析式以及一次函數(shù)與不等式的關系,屬于??碱}型,熟練掌握待定系數(shù)法與一次函數(shù)與不等式的關系是解題的關鍵.18、(1)證明見解析;(2)【解題分析】分析:(1)如下圖,連接OC,由已知易得OC⊥DE,結合BD⊥DE可得OC∥BD,從而可得∠1=∠2,結合由OB=OC所得的∠1=∠3,即可得到∠2=∠3,從而可得BC平分∠DBA;(2)由OC∥BD可得△EBD∽△EOC和△DBM∽△OCM,由根據(jù)相似三角形的性質(zhì)可得得,由,設EA=2k,AO=3k可得OC=OA=OB=3k,由此即可得到.詳解:(1)證明:連結OC,∵DE與⊙O相切于點C,∴OC⊥DE.∵BD⊥DE,∴OC∥BD..∴∠1=∠2,∵OB=OC,∴∠1=∠3,∴∠2=∠3,即BC平分∠DBA..(2)∵OC∥BD,∴△EBD∽△EOC,△DBM∽△OCM,.∴,∴,∵,設EA=2k,AO=3k,∴OC=OA=OB=3k.∴.點睛:(1)作出如圖所示的輔助線,由“切線的性質(zhì)”得到OC⊥DE結合BD⊥DE得到OC∥BD是解答第1小題的關鍵;(2)解答第2小題的關鍵是由OC∥BD得到△EBD∽△EOC和△DBM∽△OCM這樣利用相似三角形的性質(zhì)結合已知條件即可求得所求值了.19、(1);(2)k=-3【解題分析】

(1)依題意得△≥0,即[-2(k-1)]2-4k2≥0;(2)依題意x1+x2=2(k-1),x1·x2=k2以下分兩種情況討論:①當x1+x2≥0時,則有x1+x2=x1·x2-1,即2(k-1)=k2-1;②當x1+x2<0時,則有x1+x2=-(x1·x2-1),即2(k-1)=-(k2-1);【題目詳解】解:(1)依題意得△≥0,即[-2(k-1)]2-4k2≥0解得(2)依題意x1+x2=2(k-1),x1·x2=k2以下分兩種情況討論:①當x1+x2≥0時,則有x1+x2=x1·x2-1,即2(k-1)=k2-1解得k1=k2=1∵∴k1=k2=1不合題意,舍去②當x1+x2<0時,則有x1+x2=-(x1·x2-1),即2(k-1)=-(k2-1)解得k1=1,k2=-3∵∴k=-3綜合①、②可知k=-3【題目點撥】一元二次方程根與系數(shù)關系,根判別式.20、(1);(2).【解題分析】

(1)既是中心對稱圖形又是軸對稱圖形只有圓一個圖形,然后根據(jù)概率的意義解答即可;(2)畫出樹狀圖,然后根據(jù)概率公式列式計算即可得解.【題目詳解】(1)∵正三角形、平行四邊形、圓、正五邊形中只有圓既是中心對稱圖形又是軸對稱圖形,∴抽到的卡片既是中心對稱圖形又是軸對稱圖形的概率是;(2)根據(jù)題意畫出樹狀圖如下:一共有12種情況,抽出的兩張卡片的圖形是中心對稱圖形的是B、C共有2種情況,所以,P(抽出的兩張卡片的圖形是中心對稱圖形).【題目點撥】本題考查了列表法和樹狀圖法,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.21、(1)500,90°;(2)380;(3)合格率排在前兩名的是C、D兩個廠家;(4)P(選中C、D)=.【解題分析】試題分析:(1)計算出D廠的零件比例,則D廠的零件數(shù)=總數(shù)×所占比例,D廠家對應的圓心角為360°×所占比例;(2)C廠的零件數(shù)=總數(shù)×所占比例;(3)計算出各廠的合格率后,進一步比較得出答案即可;(4)利用樹狀圖法列舉出所有可能的結果,然后利用概率公式即可求解.試題解析:(1)D廠的零件比例=1-20%-20%-35%=25%,D廠的零件數(shù)=2000×25%=500件;D廠家對應的圓心角為360°×25%=90°;(2)C廠的零件數(shù)=2000×20%=400件,C廠的合格零件數(shù)=400×95%=380件,如圖:(3)A廠家合格率=630÷(2000×35%)=90%,B廠家合格率=370÷(2000×20%)=92.5%,C廠家合格率=95%,D廠家合格率470÷500=94%,合格率排在前兩名的是C、D兩個廠家;(4)根據(jù)題意畫樹形圖如下:共有12種情況,選中C、D的有2種,則P(選中C、D)==.考點:1.條形統(tǒng)計圖;2.扇形統(tǒng)計圖;3.樹狀圖法.22、(1)①20;②當弦AB的位置改變時,點P關于⊙O的“冪值”為定值,證明見解析;(2)點P關于⊙O的“冪值”為r2﹣d2;(3)﹣3≤b≤.【解題分析】【題目詳解】(1)①如圖1所示:連接OA、OB、OP.由等腰三角形的三線合一的性質(zhì)得到△PBO為直角三角形,然后依據(jù)勾股定理可求得PB的長,然后依據(jù)冪值的定義求解即可;②過點P作⊙O的弦A′B′⊥OP,連接AA′、BB′.先證明△APA′∽△B′PB,依據(jù)相似三角形的性質(zhì)得到PA?PB=PA′?PB′從而得出結論;(2)連接OP、過點P作AB⊥OP,交圓O與A、B兩點.由等腰三角形三線合一的性質(zhì)可知AP=PB,然后在Rt△APO中,依據(jù)勾股定理可知AP2=OA2-OP2,然后將d、r代入可得到問題的答案;(3)過點C作CP⊥AB,先求得OP的解析式,然后由直線AB和OP的解析式,得到點P的坐標,然后由題意圓的冪值為6,半徑為1可求得d的值,再結合兩點間的距離公式可得到關于b的方程,從而可求得b的極值,據(jù)此即可確定出b的取值范圍.【題目詳解】(1)①如圖1所示:連接OA、OB、OP,∵OA=OB,P為AB的中點,∴OP⊥AB,∵在△PBO中,由勾股定理得:PB==2,∴PA=PB=2,∴⊙O的“冪值”=2×2=20,故答案為:20;②當弦AB的位置改變時,點P關于⊙O的“冪值”為定值,證明如下:如圖,AB為⊙O中過點P的任意一條弦,且不與OP垂直,過點P作⊙O的弦A′B′⊥OP,連接AA′、BB′,∵在⊙O中,∠AA′P=∠B′BP,∠APA′=∠BPB′,∴△APA′∽△B′PB,∴,∴PA?PB=PA′?PB′=20,∴當弦AB的位置改變時,點P關于⊙O的“冪值”為定值;(2)如圖3所示;連接OP、過點P作AB⊥OP,交圓O與A、B兩點,∵AO=OB,PO⊥AB,∴AP=PB,∴點P關于⊙O的“冪值”=AP?PB=PA2,在Rt△APO中,AP2=OA2﹣OP2=r2﹣d2,∴關于⊙O的“冪值”=r2﹣d2,故答案為:點P關于⊙O的“冪值”為r2﹣d2;(3)如圖1所示:過點C作CP⊥AB,,∵CP⊥AB,AB的解析式為y=x+b,∴直線CP的解析式為y=﹣x+.聯(lián)立AB與CP,得,∴點P的坐標為(﹣﹣b,+b),∵點P關于⊙C的“冪值”為6,∴r2﹣

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論