泰興市濟川中學(xué)2024屆中考數(shù)學(xué)最后沖刺模擬試卷含解析_第1頁
泰興市濟川中學(xué)2024屆中考數(shù)學(xué)最后沖刺模擬試卷含解析_第2頁
泰興市濟川中學(xué)2024屆中考數(shù)學(xué)最后沖刺模擬試卷含解析_第3頁
泰興市濟川中學(xué)2024屆中考數(shù)學(xué)最后沖刺模擬試卷含解析_第4頁
泰興市濟川中學(xué)2024屆中考數(shù)學(xué)最后沖刺模擬試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

泰興市濟川中學(xué)2024屆中考數(shù)學(xué)最后沖刺模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.在3,0,-2,-2四個數(shù)中,最小的數(shù)是()A.3 B.0 C.-2 D.-22.如圖,點D在△ABC的邊AC上,要判斷△ADB與△ABC相似,添加一個條件,不正確的是()A.∠ABD=∠C B.∠ADB=∠ABC C. D.3.為了節(jié)約水資源,某市準(zhǔn)備按照居民家庭年用水量實行階梯水價,水價分檔遞增,計劃使第一檔、第二檔和第三檔的水價分別覆蓋全市居民家庭的80%,15%和5%.為合理確定各檔之間的界限,隨機抽查了該市5萬戶居民家庭上一年的年用水量(單位:m1),繪制了統(tǒng)計圖,如圖所示.下面有四個推斷:①年用水量不超過180m1的該市居民家庭按第一檔水價交費;②年用水量不超過240m1的該市居民家庭按第三檔水價交費;③該市居民家庭年用水量的中位數(shù)在150~180m1之間;④該市居民家庭年用水量的眾數(shù)約為110m1.其中合理的是()A.①③ B.①④ C.②③ D.②④4.如圖,已知△ADE是△ABC繞點A逆時針旋轉(zhuǎn)所得,其中點D在射線AC上,設(shè)旋轉(zhuǎn)角為α,直線BC與直線DE交于點F,那么下列結(jié)論不正確的是()A.∠BAC=α B.∠DAE=α C.∠CFD=α D.∠FDC=α5.如圖,在熱氣球C處測得地面A、B兩點的俯角分別為30°、45°,熱氣球C的高度CD為100米,點A、D、B在同一直線上,則AB兩點的距離是()A.200米 B.200米 C.220米 D.100米6.如圖,AC是⊙O的直徑,弦BD⊥AO于E,連接BC,過點O作OF⊥BC于F,若BD=8cm,AE=2cm,則OF的長度是()A.3cm B.cm C.2.5cm D.cm7.如圖所示的幾何體,它的左視圖與俯視圖都正確的是()A. B. C. D.8.方程有兩個實數(shù)根,則k的取值范圍是().A.k≥1 B.k≤1 C.k>1 D.k<19.如圖所示的幾何體的主視圖是()A. B. C. D.10.若kb<0,則一次函數(shù)的圖象一定經(jīng)過()A.第一、二象限 B.第二、三象限 C.第三、四象限 D.第一、四象限二、填空題(本大題共6個小題,每小題3分,共18分)11.一個正多邊形的一個外角為30°,則它的內(nèi)角和為_____.12.化簡代數(shù)式(x+1+)÷,正確的結(jié)果為_____.13.如圖,在菱形ABCD中,于E,,,則菱形ABCD的面積是______.14.已知b是a,c的比例中項,若a=4,c=16,則b=________.15.如圖,以點為圓心的兩個同心圓中,大圓的弦是小圓的切線,點是切點,則劣弧AB的長為.(結(jié)果保留)16.將一副三角尺如圖所示疊放在一起,則的值是.三、解答題(共8題,共72分)17.(8分)在平面直角坐標(biāo)系中,關(guān)于的一次函數(shù)的圖象經(jīng)過點,且平行于直線.(1)求該一次函數(shù)表達式;(2)若點Q(x,y)是該一次函數(shù)圖象上的點,且點Q在直線的下方,求x的取值范圍.18.(8分)如圖,Rt△ABC中,∠C=90°,⊙O是Rt△ABC的外接圓,過點C作⊙O的切線交BA的延長線于點E,BD⊥CE于點D,連接DO交BC于點M.(1)求證:BC平分∠DBA;(2)若,求的值.19.(8分)已知關(guān)于的方程有兩個實數(shù)根.求的取值范圍;若,求的值;20.(8分)如圖,有四張背面相同的卡片A、B、C、D,卡片的正面分別印有正三角形、平行四邊形、圓、正五邊形(這些卡片除圖案不同外,其余均相同).把這四張卡片背面向上洗勻后,進行下列操作:若任意抽取其中一張卡片,抽到的卡片既是中心對稱圖形又是軸對稱圖形的概率是;若任意抽出一張不放回,然后再從余下的抽出一張.請用樹狀圖或列表表示摸出的兩張卡片所有可能的結(jié)果,求抽出的兩張卡片的圖形是中心對稱圖形的概率.21.(8分)為響應(yīng)國家的“一帶一路”經(jīng)濟發(fā)展戰(zhàn)略,樹立品牌意識,我市質(zhì)檢部門對A、B、C、D四個廠家生產(chǎn)的同種型號的零件共2000件進行合格率檢測,通過檢測得出C廠家的合格率為95%,并根據(jù)檢測數(shù)據(jù)繪制了如圖1、圖2兩幅不完整的統(tǒng)計圖.抽查D廠家的零件為件,扇形統(tǒng)計圖中D廠家對應(yīng)的圓心角為;抽查C廠家的合格零件為件,并將圖1補充完整;通過計算說明合格率排在前兩名的是哪兩個廠家;若要從A、B、C、D四個廠家中,隨機抽取兩個廠家參加德國工業(yè)產(chǎn)品博覽會,請用“列表法”或“畫樹形圖”的方法求出(3)中兩個廠家同時被選中的概率.22.(10分)P是⊙O內(nèi)一點,過點P作⊙O的任意一條弦AB,我們把PA?PB的值稱為點P關(guān)于⊙O的“冪值”(1)⊙O的半徑為6,OP=1.①如圖1,若點P恰為弦AB的中點,則點P關(guān)于⊙O的“冪值”為_____;②判斷當(dāng)弦AB的位置改變時,點P關(guān)于⊙O的“冪值”是否為定值,若是定值,證明你的結(jié)論;若不是定值,求點P關(guān)于⊙0的“冪值”的取值范圍;(2)若⊙O的半徑為r,OP=d,請參考(1)的思路,用含r、d的式子表示點P關(guān)于⊙O的“冪值”或“冪值”的取值范圍_____;(3)在平面直角坐標(biāo)系xOy中,C(1,0),⊙C的半徑為3,若在直線y=x+b上存在點P,使得點P關(guān)于⊙C的“冪值”為6,請直接寫出b的取值范圍_____.23.(12分)計算:(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2)24.在?ABCD中,過點D作DE⊥AB于點E,點F在CD上,CF=AE,連接BF,AF.(1)求證:四邊形BFDE是矩形;(2)若AF平分∠BAD,且AE=3,DE=4,求tan∠BAF的值.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解題分析】

根據(jù)比較實數(shù)大小的方法進行比較即可.根據(jù)正數(shù)都大于0,負數(shù)都小于0,兩個負數(shù)絕對值大的反而小即可求解.【題目詳解】因為正數(shù)大于負數(shù),兩個負數(shù)比較大小,絕對值較大的數(shù)反而較小,所以-2<-2所以最小的數(shù)是-2,故選C.【題目點撥】此題主要考查了實數(shù)的大小的比較,正數(shù)都大于0,負數(shù)都小于0,兩個負數(shù)絕對值大的反而?。?、C【解題分析】

由∠A是公共角,利用有兩角對應(yīng)相等的三角形相似,即可得A與B正確;又由兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個三角形相似,即可得D正確,繼而求得答案,注意排除法在解選擇題中的應(yīng)用.【題目詳解】∵∠A是公共角,∴當(dāng)∠ABD=∠C或∠ADB=∠ABC時,△ADB∽△ABC(有兩角對應(yīng)相等的三角形相似),故A與B正確,不符合題意要求;當(dāng)AB:AD=AC:AB時,△ADB∽△ABC(兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個三角形相似),故D正確,不符合題意要求;AB:BD=CB:AC時,∠A不是夾角,故不能判定△ADB與△ABC相似,故C錯誤,符合題意要求,故選C.3、B【解題分析】

利用條形統(tǒng)計圖結(jié)合中位數(shù)和中位數(shù)的定義分別分析得出答案.【題目詳解】①由條形統(tǒng)計圖可得:年用水量不超過180m1的該市居民家庭一共有(0.25+0.75+1.5+1.0+0.5)=4(萬),

×100%=80%,故年用水量不超過180m1的該市居民家庭按第一檔水價交費,正確;

②∵年用水量超過240m1的該市居民家庭有(0.15+0.15+0.05)=0.15(萬),

∴×100%=7%≠5%,故年用水量超過240m1的該市居民家庭按第三檔水價交費,故此選項錯誤;

③∵5萬個數(shù)據(jù)的中間是第25000和25001的平均數(shù),

∴該市居民家庭年用水量的中位數(shù)在120-150之間,故此選項錯誤;

④該市居民家庭年用水量為110m1有1.5萬戶,戶數(shù)最多,該市居民家庭年用水量的眾數(shù)約為110m1,因此正確,

故選B.【題目點撥】此題主要考查了頻數(shù)分布直方圖以及中位數(shù)和眾數(shù)的定義,正確利用條形統(tǒng)計圖獲取正確信息是解題關(guān)鍵.4、D【解題分析】

利用旋轉(zhuǎn)不變性即可解決問題.【題目詳解】∵△DAE是由△BAC旋轉(zhuǎn)得到,

∴∠BAC=∠DAE=α,∠B=∠D,

∵∠ACB=∠DCF,

∴∠CFD=∠BAC=α,

故A,B,C正確,

故選D.【題目點撥】本題考查旋轉(zhuǎn)的性質(zhì),解題的關(guān)鍵是熟練掌握旋轉(zhuǎn)不變性解決問題,屬于中考常考題型.5、D【解題分析】

在熱氣球C處測得地面B點的俯角分別為45°,BD=CD=100米,再在Rt△ACD中求出AD的長,據(jù)此即可求出AB的長.【題目詳解】∵在熱氣球C處測得地面B點的俯角分別為45°,∴BD=CD=100米,∵在熱氣球C處測得地面A點的俯角分別為30°,∴AC=2×100=200米,∴AD==100米,∴AB=AD+BD=100+100=100(1+)米,故選D.【題目點撥】本題考查了解直角三角形的應(yīng)用--仰角、俯角問題,要求學(xué)生能借助仰角構(gòu)造直角三角形并解直角三角形.6、D【解題分析】分析:根據(jù)垂徑定理得出OE的長,進而利用勾股定理得出BC的長,再利用相似三角形的判定和性質(zhì)解答即可.詳解:連接OB,∵AC是⊙O的直徑,弦BD⊥AO于E,BD=1cm,AE=2cm.在Rt△OEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2解得:OE=3,∴OB=3+2=5,∴EC=5+3=1.在Rt△EBC中,BC=.∵OF⊥BC,∴∠OFC=∠CEB=90°.∵∠C=∠C,∴△OFC∽△BEC,∴,即,解得:OF=.故選D.點睛:本題考查了垂徑定理,關(guān)鍵是根據(jù)垂徑定理得出OE的長.7、D【解題分析】試題分析:該幾何體的左視圖是邊長分別為圓的半徑和直徑的矩形,俯視圖是邊長分別為圓的直徑和半徑的矩形,故答案選D.考點:D.8、D【解題分析】當(dāng)k=1時,原方程不成立,故k≠1,當(dāng)k≠1時,方程為一元二次方程.∵此方程有兩個實數(shù)根,∴,解得:k≤1.綜上k的取值范圍是k<1.故選D.9、A【解題分析】

找到從正面看所得到的圖形即可.【題目詳解】解:從正面可看到從左往右2列一個長方形和一個小正方形,故選A.【題目點撥】本題考查了三視圖的知識,主視圖是從物體的正面看得到的視圖.10、D【解題分析】

根據(jù)k,b的取值范圍確定圖象在坐標(biāo)平面內(nèi)的位置關(guān)系,從而求解.【題目詳解】∵kb<0,∴k、b異號。①當(dāng)k>0時,b<0,此時一次函數(shù)y=kx+b的圖象經(jīng)過第一、三、四象限;②當(dāng)k<0時,b>0,此時一次函數(shù)y=kx+b的圖象經(jīng)過第一、二、四象限;綜上所述,當(dāng)kb<0時,一次函數(shù)y=kx+b的圖象一定經(jīng)過第一、四象限。故選:D【題目點撥】此題考查一次函數(shù)圖象與系數(shù)的關(guān)系,解題關(guān)鍵在于判斷圖象的位置關(guān)系二、填空題(本大題共6個小題,每小題3分,共18分)11、1800°【解題分析】試題分析:這個正多邊形的邊數(shù)為=12,所以這個正多邊形的內(nèi)角和為(12﹣2)×180°=1800°.故答案為1800°.考點:多邊形內(nèi)角與外角.12、2x【解題分析】

根據(jù)分式的運算法則計算即可求解.【題目詳解】(x+1+)÷===2x.故答案為2x.【題目點撥】本題考查了分式的混合運算,熟知分式的混合運算順序及運算法則是解答本題的關(guān)鍵.13、【解題分析】

根據(jù)題意可求AD的長度,即可得CD的長度,根據(jù)菱形ABCD的面積=CD×AE,可求菱形ABCD的面積.【題目詳解】∵sinD=∴∴AD=11∵四邊形ABCD是菱形∴AD=CD=11∴菱形ABCD的面積=11×8=96cm1.故答案為:96cm1.【題目點撥】本題考查了菱形的性質(zhì),解直角三角形,熟練運用菱形性質(zhì)解決問題是本題的關(guān)鍵.14、±8【解題分析】

根據(jù)比例中項的定義即可求解.【題目詳解】∵b是a,c的比例中項,若a=4,c=16,∴b2=ac=4×16=64,∴b=±8,故答案為±8【題目點撥】此題考查了比例中項的定義,如果作為比例線段的內(nèi)項是兩條相同的線段,即a∶b=b∶c或,那么線段b叫做線段a、c的比例中項.15、8π.【解題分析】試題分析:因為AB為切線,P為切點,劣弧AB所對圓心角考點:勾股定理;垂徑定理;弧長公式.16、【解題分析】試題分析:∵∠BAC=∠ACD=90°,∴AB∥CD.∴△ABE∽△DCE.∴.∵在Rt△ACB中∠B=45°,∴AB=AC.∵在RtACD中,∠D=30°,∴.∴.三、解答題(共8題,共72分)17、(1);(2).【解題分析】

(1)由題意可設(shè)該一次函數(shù)的解析式為:,將點M(4,7)代入所設(shè)解析式求出b的值即可得到一次函數(shù)的解析式;(2)根據(jù)直線上的點Q(x,y)在直線的下方可得2x-1<3x+2,解不等式即得結(jié)果.【題目詳解】解:(1)∵一次函數(shù)平行于直線,∴可設(shè)該一次函數(shù)的解析式為:,∵直線過點M(4,7),∴8+b=7,解得b=-1,∴一次函數(shù)的解析式為:y=2x-1;(2)∵點Q(x,y)是該一次函數(shù)圖象上的點,∴y=2x-1,又∵點Q在直線的下方,如圖,∴2x-1<3x+2,解得x>-3.【題目點撥】本題考查了待定系數(shù)法求一次函數(shù)的解析式以及一次函數(shù)與不等式的關(guān)系,屬于??碱}型,熟練掌握待定系數(shù)法與一次函數(shù)與不等式的關(guān)系是解題的關(guān)鍵.18、(1)證明見解析;(2)【解題分析】分析:(1)如下圖,連接OC,由已知易得OC⊥DE,結(jié)合BD⊥DE可得OC∥BD,從而可得∠1=∠2,結(jié)合由OB=OC所得的∠1=∠3,即可得到∠2=∠3,從而可得BC平分∠DBA;(2)由OC∥BD可得△EBD∽△EOC和△DBM∽△OCM,由根據(jù)相似三角形的性質(zhì)可得得,由,設(shè)EA=2k,AO=3k可得OC=OA=OB=3k,由此即可得到.詳解:(1)證明:連結(jié)OC,∵DE與⊙O相切于點C,∴OC⊥DE.∵BD⊥DE,∴OC∥BD..∴∠1=∠2,∵OB=OC,∴∠1=∠3,∴∠2=∠3,即BC平分∠DBA..(2)∵OC∥BD,∴△EBD∽△EOC,△DBM∽△OCM,.∴,∴,∵,設(shè)EA=2k,AO=3k,∴OC=OA=OB=3k.∴.點睛:(1)作出如圖所示的輔助線,由“切線的性質(zhì)”得到OC⊥DE結(jié)合BD⊥DE得到OC∥BD是解答第1小題的關(guān)鍵;(2)解答第2小題的關(guān)鍵是由OC∥BD得到△EBD∽△EOC和△DBM∽△OCM這樣利用相似三角形的性質(zhì)結(jié)合已知條件即可求得所求值了.19、(1);(2)k=-3【解題分析】

(1)依題意得△≥0,即[-2(k-1)]2-4k2≥0;(2)依題意x1+x2=2(k-1),x1·x2=k2以下分兩種情況討論:①當(dāng)x1+x2≥0時,則有x1+x2=x1·x2-1,即2(k-1)=k2-1;②當(dāng)x1+x2<0時,則有x1+x2=-(x1·x2-1),即2(k-1)=-(k2-1);【題目詳解】解:(1)依題意得△≥0,即[-2(k-1)]2-4k2≥0解得(2)依題意x1+x2=2(k-1),x1·x2=k2以下分兩種情況討論:①當(dāng)x1+x2≥0時,則有x1+x2=x1·x2-1,即2(k-1)=k2-1解得k1=k2=1∵∴k1=k2=1不合題意,舍去②當(dāng)x1+x2<0時,則有x1+x2=-(x1·x2-1),即2(k-1)=-(k2-1)解得k1=1,k2=-3∵∴k=-3綜合①、②可知k=-3【題目點撥】一元二次方程根與系數(shù)關(guān)系,根判別式.20、(1);(2).【解題分析】

(1)既是中心對稱圖形又是軸對稱圖形只有圓一個圖形,然后根據(jù)概率的意義解答即可;(2)畫出樹狀圖,然后根據(jù)概率公式列式計算即可得解.【題目詳解】(1)∵正三角形、平行四邊形、圓、正五邊形中只有圓既是中心對稱圖形又是軸對稱圖形,∴抽到的卡片既是中心對稱圖形又是軸對稱圖形的概率是;(2)根據(jù)題意畫出樹狀圖如下:一共有12種情況,抽出的兩張卡片的圖形是中心對稱圖形的是B、C共有2種情況,所以,P(抽出的兩張卡片的圖形是中心對稱圖形).【題目點撥】本題考查了列表法和樹狀圖法,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.21、(1)500,90°;(2)380;(3)合格率排在前兩名的是C、D兩個廠家;(4)P(選中C、D)=.【解題分析】試題分析:(1)計算出D廠的零件比例,則D廠的零件數(shù)=總數(shù)×所占比例,D廠家對應(yīng)的圓心角為360°×所占比例;(2)C廠的零件數(shù)=總數(shù)×所占比例;(3)計算出各廠的合格率后,進一步比較得出答案即可;(4)利用樹狀圖法列舉出所有可能的結(jié)果,然后利用概率公式即可求解.試題解析:(1)D廠的零件比例=1-20%-20%-35%=25%,D廠的零件數(shù)=2000×25%=500件;D廠家對應(yīng)的圓心角為360°×25%=90°;(2)C廠的零件數(shù)=2000×20%=400件,C廠的合格零件數(shù)=400×95%=380件,如圖:(3)A廠家合格率=630÷(2000×35%)=90%,B廠家合格率=370÷(2000×20%)=92.5%,C廠家合格率=95%,D廠家合格率470÷500=94%,合格率排在前兩名的是C、D兩個廠家;(4)根據(jù)題意畫樹形圖如下:共有12種情況,選中C、D的有2種,則P(選中C、D)==.考點:1.條形統(tǒng)計圖;2.扇形統(tǒng)計圖;3.樹狀圖法.22、(1)①20;②當(dāng)弦AB的位置改變時,點P關(guān)于⊙O的“冪值”為定值,證明見解析;(2)點P關(guān)于⊙O的“冪值”為r2﹣d2;(3)﹣3≤b≤.【解題分析】【題目詳解】(1)①如圖1所示:連接OA、OB、OP.由等腰三角形的三線合一的性質(zhì)得到△PBO為直角三角形,然后依據(jù)勾股定理可求得PB的長,然后依據(jù)冪值的定義求解即可;②過點P作⊙O的弦A′B′⊥OP,連接AA′、BB′.先證明△APA′∽△B′PB,依據(jù)相似三角形的性質(zhì)得到PA?PB=PA′?PB′從而得出結(jié)論;(2)連接OP、過點P作AB⊥OP,交圓O與A、B兩點.由等腰三角形三線合一的性質(zhì)可知AP=PB,然后在Rt△APO中,依據(jù)勾股定理可知AP2=OA2-OP2,然后將d、r代入可得到問題的答案;(3)過點C作CP⊥AB,先求得OP的解析式,然后由直線AB和OP的解析式,得到點P的坐標(biāo),然后由題意圓的冪值為6,半徑為1可求得d的值,再結(jié)合兩點間的距離公式可得到關(guān)于b的方程,從而可求得b的極值,據(jù)此即可確定出b的取值范圍.【題目詳解】(1)①如圖1所示:連接OA、OB、OP,∵OA=OB,P為AB的中點,∴OP⊥AB,∵在△PBO中,由勾股定理得:PB==2,∴PA=PB=2,∴⊙O的“冪值”=2×2=20,故答案為:20;②當(dāng)弦AB的位置改變時,點P關(guān)于⊙O的“冪值”為定值,證明如下:如圖,AB為⊙O中過點P的任意一條弦,且不與OP垂直,過點P作⊙O的弦A′B′⊥OP,連接AA′、BB′,∵在⊙O中,∠AA′P=∠B′BP,∠APA′=∠BPB′,∴△APA′∽△B′PB,∴,∴PA?PB=PA′?PB′=20,∴當(dāng)弦AB的位置改變時,點P關(guān)于⊙O的“冪值”為定值;(2)如圖3所示;連接OP、過點P作AB⊥OP,交圓O與A、B兩點,∵AO=OB,PO⊥AB,∴AP=PB,∴點P關(guān)于⊙O的“冪值”=AP?PB=PA2,在Rt△APO中,AP2=OA2﹣OP2=r2﹣d2,∴關(guān)于⊙O的“冪值”=r2﹣d2,故答案為:點P關(guān)于⊙O的“冪值”為r2﹣d2;(3)如圖1所示:過點C作CP⊥AB,,∵CP⊥AB,AB的解析式為y=x+b,∴直線CP的解析式為y=﹣x+.聯(lián)立AB與CP,得,∴點P的坐標(biāo)為(﹣﹣b,+b),∵點P關(guān)于⊙C的“冪值”為6,∴r2﹣

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論