下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
關(guān)于ff頻偏估計(jì)算法的研究
在數(shù)字移動(dòng)通信系統(tǒng)中,.4-dqpsk(.4-squirent然然于quadinationphazartandu)的定時(shí)傳輸方法已廣泛使用。在數(shù)據(jù)傳輸過程中,由于移動(dòng)臺(tái)與基站之間的相對(duì)快速運(yùn)動(dòng)使接收信號(hào)中存在很大的多普勒頻率漂移,嚴(yán)重影響了通信質(zhì)量,因而為了實(shí)現(xiàn)正確的通信,載波同步在數(shù)字通信調(diào)制解調(diào)技術(shù)中起到很重要的作用。傳統(tǒng)的基于鎖相環(huán)的載波同步算法由于環(huán)路收斂速率慢,捕獲時(shí)間長(zhǎng),并且頻偏估計(jì)精度容易受信噪比的影響,所以其性能受到一定限制。近年來基于FFT的頻偏估計(jì)算法,由于其具有計(jì)算量小,在一定信噪比條件下其誤差精度與信噪比無(wú)關(guān)等優(yōu)點(diǎn),受到人們?cè)絹碓蕉嗟年P(guān)注。由文獻(xiàn)可知,由于FFT(fastfouriertransform)自身的柵欄效應(yīng),其頻譜分辨率為采樣頻率FS比上FFT的點(diǎn)數(shù)N,即FS/N。在以往的頻偏估計(jì)算法中存在估計(jì)范圍較小或精度較差的問題。文獻(xiàn)中的算法具有較高的精確度,但是受奈奎斯特第一準(zhǔn)則的限制,其頻偏估計(jì)范圍比較小。文獻(xiàn)中算法精度不夠高。所以針對(duì)估計(jì)范圍和估計(jì)精度相互矛盾的問題,本文提出了一種大范圍高精度的改進(jìn)FFT頻偏估計(jì)算法。本文首先介紹了π/4-DQPSK信號(hào)的基本模型,其次描述了算法的基本原理及數(shù)學(xué)表達(dá)式,再次分析了FFT變換后的頻域信噪比增益,最后建立仿真模型,對(duì)算法進(jìn)行仿真,獲得了有一定參考價(jià)值的結(jié)果。1基帶成脈沖t的基本原理π/4-DQPSK調(diào)制信號(hào)的數(shù)學(xué)表達(dá)式為s(t)=∑n=?∞∞g(t?nTS)cos[2πft+θ(t)+θ0]+wn(1)s(t)=∑n=-∞∞g(t-nΤS)cos[2πft+θ(t)+θ0]+wn(1)其中:g(t)是具有平方根升余弦頻譜的基帶成型脈沖;f為載波頻率;TS為調(diào)制符號(hào)的碼元寬度;θ(t)為調(diào)制相位{±π/4,±π3/4};wn是均值為0,方差為σ2的高斯白噪聲。假設(shè)初相θ0=0,A=g(t-nTS)。忽略高斯白噪聲wk,式(1)簡(jiǎn)化為s(t)=Acos[2πft+θ(t)](2)接收信號(hào)與本地載波(頻率為fc)進(jìn)行混頻,并經(jīng)過低通濾波器后,接收到的已調(diào)基帶信號(hào)為I(n)=Acos[2πΔfnTS+θ(nTS)](3)Q(n)=Asin[2πΔfnTS+θ(nTS)](4)式中頻偏Δf=f-fc。復(fù)數(shù)表達(dá)式為r(n)=Aej[2πΔfnTS+θ(nTS)](5)其中I(n),Q(n)分別是r(n)的實(shí)部和虛部。2準(zhǔn)數(shù)字化算法的參數(shù)化輸出用FFT進(jìn)行頻偏估計(jì)的框圖如圖1所示,模擬信號(hào)s(t)經(jīng)過數(shù)模轉(zhuǎn)換(A/D)、帶通、下變頻、低通、匹配濾波后轉(zhuǎn)換為碼元寬度為TS的數(shù)據(jù)序列,從而適合后面的FFT算法的運(yùn)算。通過對(duì)長(zhǎng)度為M的數(shù)據(jù)序列進(jìn)行FFT變換,多普勒頻偏Δf通過計(jì)算被估計(jì)出來,然后利用Δf去控制數(shù)控振蕩器(NCO)的參數(shù),從而實(shí)現(xiàn)正確的數(shù)字解調(diào)。式(5)的FFT變換式為R(a)=A∑n=0N?1exp{j(2πn(ΔfTS?a)N+θ)}(6)R(a)=A∑n=0Ν-1exp{j(2πn(ΔfΤS-a)Ν+θ)}(6)式中:N為FFT的采樣點(diǎn)數(shù);θ為相位。對(duì)式(6)進(jìn)行頻譜分析,求R(k)模值最大的點(diǎn):Φ(amax,Δf)=max[abs(R)](7)式(7)中R={R(0),R(1),…,R(N-1)}是長(zhǎng)度為M的調(diào)制信號(hào)序列補(bǔ)充N-M個(gè)0后的FFT變換輸出。當(dāng)模值最大的是R(amax)時(shí),可以得到頻偏的估計(jì)的表達(dá)式為Δf=amax·FS/N(8)其中調(diào)制信號(hào)頻率FS=1/TS。由于Δf有正負(fù)之分,從數(shù)字信號(hào)處理的理論可得,復(fù)信號(hào)的離散傅里葉變換是單邊頻譜。當(dāng)Δf為正值時(shí),amax出現(xiàn)在(0~N/2-1);當(dāng)Δf為負(fù)值時(shí),amax出現(xiàn)在(N/2~N-1)。正是有了這個(gè)特性,Δf的絕對(duì)值大小和正負(fù)都能被估計(jì)出來。3fft估計(jì)算法從式(8)中可知,由于amax是整數(shù),所以Δf的最小分辨率為FS/N。要提高頻率分辨率有以下幾種方法:1)增加FFT的點(diǎn)數(shù)N。由于N的增加了,必然導(dǎo)致算法運(yùn)算量的增加,這就不利于工程上的實(shí)現(xiàn),所以實(shí)際運(yùn)用中一般不增加點(diǎn)數(shù)N。2)降低采樣率。對(duì)進(jìn)入FFT變換的數(shù)據(jù)進(jìn)行抽取,抽取因子為L(zhǎng),使其采樣率降低為原來的1/L,那么頻率分辨率也降低為原來的1/L,即為FS/(NL)。3)非線性變換Δf,即倍頻Δf。當(dāng)FS和N固定時(shí),其頻率分辨率固定為FS/N,而當(dāng)K倍頻Δf為KΔf后,經(jīng)過FFT估計(jì)后其頻率分辨率仍是FS/N,除以K得原頻偏后,頻率分辨率為原來的1/K,即為FS/(NK)。本文的頻偏估計(jì)算法分2次完成:第1次頻偏初估計(jì),其分辨率為FS/N,其中FS=RS,RS為調(diào)制信號(hào)的速率。當(dāng)頻偏Δf接近±RS/2時(shí),由奈奎斯特第一準(zhǔn)則可知,此時(shí)頻偏Δf的采樣速率已經(jīng)接近2倍的極限值了,所以方法2)降低采樣率和方法3)倍頻在這種條件下都不適用,因此第1次只進(jìn)行快速粗略估計(jì)。將第1次得到的估計(jì)值Δf1反饋回去控制NCO,此時(shí)信號(hào)中還存在殘余頻偏,大小為(-FS/2N~FS/2N),其值遠(yuǎn)遠(yuǎn)小于采樣速率FS,因此為了提高頻率分辨率,可以進(jìn)行方法2)降低采樣率和方法3)倍頻的變換。將采樣率降低為原來的1/L,將殘余頻偏倍頻K倍,頻率分辨率為FS/KLN。最后得到的頻偏表達(dá)式為Δf=Δf1+Δf2=amax1·FS/N+amax2·FS/(KLN)(9)式(9)的頻率分辨率為FS/KLN,是原來的1/KL,大大提高了頻偏估計(jì)的精度。若只考慮滿足奈奎斯特第一準(zhǔn)則,那么第2次估計(jì)時(shí),當(dāng)KL=N,該算法的分辨率最高為FS/N2,此時(shí)的頻率精度達(dá)±FS/2N2。4信噪比的基本概念由式(8)可知,當(dāng)信號(hào)頻率正好與FFT譜線對(duì)應(yīng),即ΔfTS=a時(shí),FFT輸出譜線值最大,其幅值為|R(amax)|=∣∣∣∣A∑n=0M?1exp{j(0+θ)}∣∣∣∣=MA(10)|R(amax)|=|A∑n=0Μ-1exp{j(0+θ)}|=ΜA(10)當(dāng)信號(hào)頻率不在FFT譜線上,ΔfTS≠a時(shí),令δ=ΔfTS-a,其幅值為|R(amax)|=∣∣∣∣A∑n=0M?1exp{j(2πnδN+θ)}∣∣∣∣=|R(amax)|=|A∑n=0Μ-1exp{j(2πnδΝ+θ)}|=A1?cos(2πMδ/N)1?cos(2πδ/N)??????????√(11)A1-cos(2πΜδ/Ν)1-cos(2πδ/Ν)(11)當(dāng)信噪比較低時(shí),噪聲的影響不能忽略。由于FFT是線性運(yùn)算,頻域中的高斯噪聲仍然服從高斯分布。高斯白噪聲wn的FFT變換為W(a)=∑n=0N?1wnexp(?j2πnaN)(12)W(a)=∑n=0Ν-1wnexp(-j2πnaΝ)(12)均值為E[W(a)]=∑n=0M?1E[wn]exp(?j2πnaN)=0(13)E[W(a)]=∑n=0Μ-1E[wn]exp(-j2πnaΝ)=0(13)方差為σF2=E[|W(a)?E[W(a)]|2]=σF2=E[|W(a)-E[W(a)]|2]=E[|W(a)|2]=E[|W(a)|2]=E[∣∣∣∣∑n=0M?1wnexp(?j2πnaN)∣∣∣∣2]=Mσ2(14)E[|∑n=0Μ-1wnexp(-j2πnaΝ)|2]=Μσ2(14)當(dāng)信號(hào)頻偏正好與FFT譜線對(duì)應(yīng)時(shí),頻域信噪比為(SNF)=(MA)22σF2=MA22σ2=M(SN0)(15)(SΝF)=(ΜA)22σF2=ΜA22σ2=Μ(SΝ0)(15)當(dāng)信號(hào)頻偏不在FFT譜線上時(shí),頻域信噪比為(SNF)=(A1?cos(2πMδ/N)1?cos(2πδ/N)√)22σF2=1?cos(2πMδ/N)A2(1?cos(2πδ/N))2Mσ2=1?cos(2πMδ/N)M(1?cos(2πδ/N))(SN0)=1?cos(2πMδ/N)M?2sin2(πδ/N)(SN0)≈1?cos(2πMδ/N)2Mπ2δ2N2(SN0),N>>1(16)(SΝF)=(A1-cos(2πΜδ/Ν)1-cos(2πδ/Ν))22σF2=1-cos(2πΜδ/Ν)A2(1-cos(2πδ/Ν))2Μσ2=1-cos(2πΜδ/Ν)Μ(1-cos(2πδ/Ν))(SΝ0)=1-cos(2πΜδ/Ν)Μ?2sin2(πδ/Ν)(SΝ0)≈1-cos(2πΜδ/Ν)2Μπ2δ2Ν2(SΝ0),Ν>>1(16)當(dāng)信號(hào)頻偏與FFT譜線對(duì)應(yīng)時(shí),信噪比增益為Δ(SN)=10lg(SNF)?10lg(SN0)=10lgM(17)Δ(SΝ)=10lg(SΝF)-10lg(SΝ0)=10lgΜ(17)當(dāng)信號(hào)頻偏不在FFT譜線上時(shí),信噪比增益為Δ(SN)=10lg(SNF)?10lg(SN0)=Δ(SΝ)=10lg(SΝF)-10lg(SΝ0)=10lg[1?cos(2πMδ/N)2Mπ2δ2N2](18)10lg[1-cos(2πΜδ/Ν)2Μπ2δ2Ν2](18)其中(SN0)(SΝ0)為時(shí)域信噪比。通過對(duì)式(15)、(16)、(17)和(18)分析可得,頻域信噪比得到很大提高,并隨FFT點(diǎn)數(shù)N和計(jì)算的數(shù)據(jù)量M的增加而提高;在信號(hào)頻率與FFT譜線對(duì)應(yīng)時(shí)最大,并隨著信號(hào)頻率遠(yuǎn)離譜線而減小。由于有一定信噪比增益,所以在負(fù)信噪比環(huán)境下FFT算法也有很好的頻偏估計(jì)性能。5頻偏估計(jì)的仿真結(jié)果根據(jù)以上討論,用Matlab軟件對(duì)改進(jìn)的FFT頻偏估計(jì)算法進(jìn)行仿真。仿真在大多普勒頻偏加高斯白噪聲的環(huán)境下進(jìn)行。仿真中基帶信號(hào)速率Rb=100kbps,調(diào)制信號(hào)速率RS=50kbps,多普勒頻偏Δfd∈(-25kHz,25kHz),FFT的采樣速率FS=RS,2次用來FFT計(jì)算的調(diào)制信號(hào)序列長(zhǎng)度M=64,FFT的點(diǎn)數(shù)N=2048,抽取因子L=32,倍頻因子K=8。此時(shí)系統(tǒng)的頻率分辨率為FS/KLN=0.0954Hz,即估計(jì)出來的頻率誤差小于±0.0477Hz。由于第1次頻偏估計(jì)的分辨率為FS/N=24.414Hz,那么殘余的頻偏為(-12.207~12.207Hz),若只考慮奈奎斯特第一準(zhǔn)則,那么當(dāng)KL=2048時(shí),此時(shí)系統(tǒng)的最小頻率分辨率為1.19×10-2Hz,即頻偏估計(jì)的最小誤差為6×10-3Hz。圖2和圖3分別是SNR=15dB和SNR=-15dB時(shí)的第1次和第2次頻偏估計(jì)的誤差對(duì)比圖。從圖中可以看出,在正負(fù)2種信噪比的條件下,都得到了很好的頻偏估計(jì)效果,2種信噪比的第1次頻偏估計(jì)范圍都達(dá)到(-25kHz,25kHz),此時(shí)其頻率誤差為±12Hz左右。在第2次估計(jì)后,其頻偏估計(jì)范圍保持不變,頻率誤差大大降低(小于±0.05Hz,如圖4所示)。圖4為SNR=±15dB的最后頻率誤差,2種SNR條件下得到的仿真結(jié)果完全一樣,其大小與理論值完全符合。由式(17)和(18)可知頻域信噪比在經(jīng)FFT變換后有較大的增益。如圖5所示:當(dāng)N和δ一定時(shí),增益隨M的增加而增大;當(dāng)N和M一定時(shí),δ=0時(shí)增益最大,δ=1/2時(shí)增益最小。所以當(dāng)為負(fù)信噪比時(shí),只要不低于一定值,頻偏估計(jì)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版搬運(yùn)企業(yè)節(jié)能減排合同范本3篇
- 2025年度木材加工設(shè)備租賃及維護(hù)服務(wù)合同范本4篇
- 2025版民爆物品裝卸作業(yè)環(huán)境保護(hù)合同4篇
- 2025年度個(gè)人消費(fèi)分期付款合同范本(2025版)3篇
- 農(nóng)業(yè)機(jī)械化與農(nóng)村振興人才培育考核試卷
- 2025版事業(yè)單位聘用合同正規(guī)范本(含試用期)2篇
- 2025版人工智能研發(fā)中心錄用合同范本3篇
- 2025年公益活動(dòng)加盟合同
- 2025年大型活動(dòng)合作協(xié)議
- 2025年度高科技實(shí)驗(yàn)室租賃合同4篇
- 【探跡科技】2024知識(shí)產(chǎn)權(quán)行業(yè)發(fā)展趨勢(shì)報(bào)告-從工業(yè)轟鳴到數(shù)智浪潮知識(shí)產(chǎn)權(quán)成為競(jìng)爭(zhēng)市場(chǎng)的“矛與盾”
- 《中國(guó)政法大學(xué)》課件
- GB/T 35270-2024嬰幼兒背帶(袋)
- 遼寧省沈陽(yáng)名校2025屆高三第一次模擬考試英語(yǔ)試卷含解析
- 2024-2025學(xué)年高二上學(xué)期期末數(shù)學(xué)試卷(新題型:19題)(基礎(chǔ)篇)(含答案)
- 2022版藝術(shù)新課標(biāo)解讀心得(課件)小學(xué)美術(shù)
- Profinet(S523-FANUC)發(fā)那科通訊設(shè)置
- 醫(yī)學(xué)教程 常見化療藥物歸納
- 統(tǒng)編版九年級(jí)歷史下冊(cè)第一單元教案教學(xué)設(shè)計(jì)
- GB/T 25000.51-2016系統(tǒng)與軟件工程系統(tǒng)與軟件質(zhì)量要求和評(píng)價(jià)(SQuaRE)第51部分:就緒可用軟件產(chǎn)品(RUSP)的質(zhì)量要求和測(cè)試細(xì)則
- 外科學(xué)試題庫(kù)及答案(共1000題)
評(píng)論
0/150
提交評(píng)論