




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第11講拓展五:圓錐曲線的方程(定值問題)一、知識(shí)點(diǎn)歸納在解析幾何中,有些幾何量,如斜率、距離、面積、比值、角度等基本量與參變量無關(guān),這類問題統(tǒng)稱為③定值問題.對(duì)學(xué)生邏輯思維能力計(jì)算能力等要求很高,這些問題重點(diǎn)考查學(xué)生方程思想、函數(shù)思想、轉(zhuǎn)化與化歸思想的應(yīng)用.探索圓錐曲線的定值問題常見方法有兩種:①從特殊入手,先根據(jù)特殊位置和數(shù)值求出定值,再證明這個(gè)值與變量無關(guān);②直接推理、計(jì)算,并在計(jì)算推理的過程中消去變量,從而得到定值.解答的關(guān)鍵是認(rèn)真審題,理清問題與題設(shè)的關(guān)系,建立合理的方程或函數(shù),利用等量關(guān)系統(tǒng)一變量,最后消元得出定值。常考題型:①與面積有關(guān)的定值問題;②與角度有關(guān)的定值問題;③與比值有關(guān)的定值問題;④與參數(shù)有關(guān)的定值問題;⑤與斜率有關(guān)的定值問題二、題型精講題型01圓錐曲線中的定點(diǎn)問題【典例1】(2023春·四川自貢·高二統(tǒng)考期末)已知橢圓SKIPIF1<0的離心率為SKIPIF1<0,右頂點(diǎn)SKIPIF1<0.(1)求橢圓SKIPIF1<0的標(biāo)準(zhǔn)方程;(2)SKIPIF1<0、SKIPIF1<0為橢圓SKIPIF1<0上的不同兩點(diǎn),設(shè)直線SKIPIF1<0,SKIPIF1<0的斜率分別為SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,判斷直線SKIPIF1<0是否經(jīng)過定點(diǎn)并說明理由.【答案】(1)SKIPIF1<0(2)直線SKIPIF1<0經(jīng)過定點(diǎn)SKIPIF1<0,理由見解析【詳解】(1)由題意可知,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以橢圓SKIPIF1<0的標(biāo)準(zhǔn)方程為SKIPIF1<0.(2)直線經(jīng)過定點(diǎn)SKIPIF1<0,理由如下,
若直線SKIPIF1<0的斜率存在,設(shè)SKIPIF1<0方程為SKIPIF1<0,則將直線方程代入橢圓方程消去SKIPIF1<0可得SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0,設(shè)SKIPIF1<0、SKIPIF1<0,則有SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0方程為SKIPIF1<0,過定點(diǎn)SKIPIF1<0,不合題意,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0方程為SKIPIF1<0,過定點(diǎn)SKIPIF1<0,若直線SKIPIF1<0的斜率不存在,設(shè)SKIPIF1<0方程為SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,此時(shí)SKIPIF1<0方程為SKIPIF1<0,顯然過點(diǎn)SKIPIF1<0綜上,直線SKIPIF1<0經(jīng)過定點(diǎn)SKIPIF1<0.【典例2】(2023秋·江蘇鹽城·高二鹽城市伍佑中學(xué)??计谀┮阎獧E圓SKIPIF1<0的左頂點(diǎn)為SKIPIF1<0.橢圓SKIPIF1<0的離心率為SKIPIF1<0并且與直線SKIPIF1<0相切.(1)求橢圓SKIPIF1<0的方程;(2)斜率存在且不為0的直線SKIPIF1<0交橢圓SKIPIF1<0于SKIPIF1<0,SKIPIF1<0兩點(diǎn)(異于點(diǎn)SKIPIF1<0),且SKIPIF1<0.則直線SKIPIF1<0是否恒過定點(diǎn),如果過定點(diǎn)求出該定點(diǎn)坐標(biāo),若不過定點(diǎn)請(qǐng)說明理由.【答案】(1)SKIPIF1<0(2)直線恒過定點(diǎn)SKIPIF1<0.【詳解】(1)由題意可得SKIPIF1<0,可得SKIPIF1<0,所以橢圓的方程為:SKIPIF1<0,即SKIPIF1<0,聯(lián)立SKIPIF1<0,整理可得:SKIPIF1<0,由題意可得SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,所以橢圓的方程為:SKIPIF1<0;
(2)因?yàn)镾KIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0,由(1)可得SKIPIF1<0,由題意設(shè)直線SKIPIF1<0的方程為:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,聯(lián)立SKIPIF1<0,整理可得:SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0,整理可得:SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍),即SKIPIF1<0時(shí),不論SKIPIF1<0為何值都符合SKIPIF1<0,所以直線SKIPIF1<0的方程為SKIPIF1<0,則直線恒過定點(diǎn)SKIPIF1<0.
【典例3】(2023春·浙江杭州·高二校聯(lián)考期中)已知雙曲線SKIPIF1<0:SKIPIF1<0的離心率為SKIPIF1<0,且過SKIPIF1<0.(1)求雙曲線SKIPIF1<0的方程;(2)若直線SKIPIF1<0與雙曲線SKIPIF1<0交于SKIPIF1<0兩點(diǎn),SKIPIF1<0是SKIPIF1<0的右頂點(diǎn),且直線SKIPIF1<0與SKIPIF1<0的斜率之積為SKIPIF1<0,證明:直線SKIPIF1<0恒過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).【答案】(1)SKIPIF1<0(2)證明見解析,定點(diǎn)SKIPIF1<0.【詳解】(1)根據(jù)題意可得SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,所以雙曲線SKIPIF1<0的方程為SKIPIF1<0.(2)設(shè)SKIPIF1<0,SKIPIF1<0,聯(lián)立SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0所以SKIPIF1<0SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,所以直線SKIPIF1<0的方程為SKIPIF1<0,恒過定點(diǎn)SKIPIF1<0.【典例4】(2023春·廣東佛山·高二石門中學(xué)校考階段練習(xí))已知SKIPIF1<0為拋物線SKIPIF1<0的焦點(diǎn),SKIPIF1<0為拋物線SKIPIF1<0在第一象限上的一點(diǎn),且SKIPIF1<0軸,SKIPIF1<0.(1)求拋物線SKIPIF1<0的標(biāo)準(zhǔn)方程;(2)已知直線SKIPIF1<0與拋物線SKIPIF1<0交于SKIPIF1<0、SKIPIF1<0兩點(diǎn),且以SKIPIF1<0為直徑的圓過點(diǎn)SKIPIF1<0,證明:直線SKIPIF1<0過定點(diǎn).【答案】(1)SKIPIF1<0(2)證明見解析【詳解】(1)因?yàn)镾KIPIF1<0軸,SKIPIF1<0,所以點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以拋物線方程為SKIPIF1<0.(2)設(shè)SKIPIF1<0的方程為SKIPIF1<0,代入SKIPIF1<0有SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,直線SKIPIF1<0與拋物線SKIPIF1<0交于SKIPIF1<0、SKIPIF1<0兩點(diǎn),且以SKIPIF1<0為直徑的圓過點(diǎn)SKIPIF1<0,所以SKIPIF1<0,由(1)可得SKIPIF1<0,所以SKIPIF1<0即SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以直線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0直線SKIPIF1<0恒過點(diǎn)SKIPIF1<0.
【變式1】(2023·甘肅張掖·高臺(tái)縣第一中學(xué)??寄M預(yù)測(cè))已知橢圓C:SKIPIF1<0經(jīng)過圓SKIPIF1<0:SKIPIF1<0的圓心,C的左焦點(diǎn)F到圓SKIPIF1<0上的點(diǎn)的距離的最小值為SKIPIF1<0.(1)求C的標(biāo)準(zhǔn)方程.(2)過點(diǎn)F作斜率之積為-1的兩條直線SKIPIF1<0,SKIPIF1<0,SKIPIF1<0與C相交于A,B兩點(diǎn),SKIPIF1<0與C相交于M,N兩點(diǎn),點(diǎn)P,Q分別滿足SKIPIF1<0,SKIPIF1<0,問:直線PQ是否過定點(diǎn)?若過定點(diǎn),求出該定點(diǎn)的坐標(biāo);若不過定點(diǎn),試說明理由.【答案】(1)SKIPIF1<0(2)直線PQ過定點(diǎn)SKIPIF1<0.【詳解】(1)圓SKIPIF1<0的方程可化為SKIPIF1<0,故SKIPIF1<0,半徑SKIPIF1<0,將SKIPIF1<0代入橢圓方程得SKIPIF1<0.設(shè)C的左焦點(diǎn)F的坐標(biāo)為(-c,0),則SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,所以C的標(biāo)準(zhǔn)方程為SKIPIF1<0.(2)直線PQ過定點(diǎn)SKIPIF1<0,理由如下.由(1)知SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0的斜率之積為-1,所以SKIPIF1<0,易知SKIPIF1<0,SKIPIF1<0的斜率存在且不為0.由SKIPIF1<0,SKIPIF1<0,可知點(diǎn)P為線段AB的中點(diǎn),點(diǎn)Q為線段MN的中點(diǎn).設(shè)SKIPIF1<0的方程為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0消去y,得SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以點(diǎn)P的坐標(biāo)為SKIPIF1<0.將點(diǎn)P坐標(biāo)中的k換成SKIPIF1<0,可得SKIPIF1<0當(dāng)SKIPIF1<0時(shí),解得SKIPIF1<0,此時(shí)直線PQ的方程為SKIPIF1<0,恒過x軸上的點(diǎn)SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即直線PQ過定點(diǎn)SKIPIF1<0.綜上所述,直線PQ過定點(diǎn)SKIPIF1<0.【變式2】(2023·海南海口·海南華僑中學(xué)??寄M預(yù)測(cè))已知雙曲線SKIPIF1<0:SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)的離心率為SKIPIF1<0,右頂點(diǎn)SKIPIF1<0到漸近線的距離等于SKIPIF1<0.(1)求雙曲線SKIPIF1<0的方程.(2)點(diǎn)SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上,且SKIPIF1<0,直線SKIPIF1<0是否過定點(diǎn)?若是,求出定點(diǎn)坐標(biāo);若不是,請(qǐng)說明理由.【答案】(1)SKIPIF1<0(2)直線SKIPIF1<0過定點(diǎn)SKIPIF1<0【詳解】(1)由題意,取漸近線SKIPIF1<0,右頂點(diǎn)SKIPIF1<0到該漸近線的距離SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的方程為SKIPIF1<0.(2)由題意知直線SKIPIF1<0的斜率存在且不為SKIPIF1<0,設(shè)直線SKIPIF1<0:SKIPIF1<0,與SKIPIF1<0的方程聯(lián)立,消去SKIPIF1<0得SKIPIF1<0,易知SKIPIF1<0,由韋達(dá)定理得SKIPIF1<0,則SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,用SKIPIF1<0代替SKIPIF1<0(顯然此時(shí)SKIPIF1<0),同理得SKIPIF1<0,得SKIPIF1<0,直線SKIPIF1<0:SKIPIF1<0,過定點(diǎn)SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),直線SKIPIF1<0的斜率不存在,易知直線SKIPIF1<0的方程為SKIPIF1<0,過左焦點(diǎn)SKIPIF1<0.綜上,直線SKIPIF1<0過定點(diǎn)SKIPIF1<0.
【變式3】(2023·全國(guó)·高三對(duì)口高考)已知拋物線S的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,SKIPIF1<0的三個(gè)頂點(diǎn)都在拋物線上,且SKIPIF1<0的重心為拋物線的焦點(diǎn),若SKIPIF1<0所在直線l的方程為SKIPIF1<0.(1)求拋物線S的方程;(2)若O是坐標(biāo)原點(diǎn),P,Q是拋物線S上兩動(dòng)點(diǎn),且滿足SKIPIF1<0.試說明動(dòng)直線SKIPIF1<0是否過定點(diǎn).【答案】(1)SKIPIF1<0(2)過定點(diǎn)SKIPIF1<0【詳解】(1)解:設(shè)拋物線SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立方程組SKIPIF1<0,可得SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0或SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,設(shè)SKIPIF1<0,由SKIPIF1<0的重心為SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,因?yàn)辄c(diǎn)SKIPIF1<0在拋物線SKIPIF1<0上,所以SKIPIF1<0,解得SKIPIF1<0,所以拋物線SKIPIF1<0的方程為SKIPIF1<0.(2)解:當(dāng)動(dòng)直線SKIPIF1<0的斜率存在時(shí),設(shè)動(dòng)直線SKIPIF1<0的方程為SKIPIF1<0,顯然SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,設(shè)SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,聯(lián)立方程組SKIPIF1<0,整理得SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以動(dòng)直線的方程為SKIPIF1<0,此時(shí)動(dòng)直線SKIPIF1<0恒過定點(diǎn)SKIPIF1<0.當(dāng)動(dòng)直線SKIPIF1<0的斜率不存在時(shí),顯然SKIPIF1<0軸,因?yàn)镾KIPIF1<0,所以SKIPIF1<0為等腰直角三角形,由SKIPIF1<0和SKIPIF1<0,得到SKIPIF1<0,此時(shí)直線SKIPIF1<0也過定點(diǎn)SKIPIF1<0,綜上可得,動(dòng)直線SKIPIF1<0恒過定點(diǎn)SKIPIF1<0.題型02圓錐曲線中的定值問題【典例1】(2023·河北滄州·??寄M預(yù)測(cè))已知橢圓SKIPIF1<0過點(diǎn)SKIPIF1<0,點(diǎn)SKIPIF1<0與SKIPIF1<0關(guān)于原點(diǎn)對(duì)稱,橢圓SKIPIF1<0上的點(diǎn)SKIPIF1<0滿足直線SKIPIF1<0與直線SKIPIF1<0的斜率之積為SKIPIF1<0.(1)求橢圓SKIPIF1<0的方程;(2)直線SKIPIF1<0與橢圓SKIPIF1<0相交于SKIPIF1<0兩點(diǎn),已知點(diǎn)SKIPIF1<0,點(diǎn)SKIPIF1<0與SKIPIF1<0關(guān)于原點(diǎn)對(duì)稱,討論:直線SKIPIF1<0的斜率與直線SKIPIF1<0的斜率之和是否為定值?如果是,求出此定值;如果不是,請(qǐng)說明理由.【答案】(1)SKIPIF1<0(2)是定值,0【詳解】(1)因?yàn)闄E圓SKIPIF1<0過點(diǎn)SKIPIF1<0,所以SKIPIF1<0,設(shè)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0,所以橢圓SKIPIF1<0的方程SKIPIF1<0.(2)直線SKIPIF1<0,代入橢圓SKIPIF1<0,可得SKIPIF1<0,由于直線SKIPIF1<0交橢圓SKIPIF1<0于SKIPIF1<0兩點(diǎn),所以SKIPIF1<0,整理得SKIPIF1<0.設(shè)SKIPIF1<0,由于點(diǎn)SKIPIF1<0與SKIPIF1<0關(guān)于原點(diǎn)對(duì)稱,所以SKIPIF1<0,于是有SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,于是有SKIPIF1<0SKIPIF1<0故直線SKIPIF1<0的斜率與直線SKIPIF1<0的斜率之和為0.
【典例2】(2023·廣東佛山·校聯(lián)考模擬預(yù)測(cè))已知SKIPIF1<0是圓SKIPIF1<0上一動(dòng)點(diǎn),定點(diǎn)SKIPIF1<0,線段SKIPIF1<0的垂直平分線SKIPIF1<0與直線SKIPIF1<0交于點(diǎn)SKIPIF1<0,記點(diǎn)SKIPIF1<0的軌跡為SKIPIF1<0.(1)求SKIPIF1<0的方程;(2)若直線SKIPIF1<0與曲線SKIPIF1<0恰有一個(gè)共點(diǎn),且SKIPIF1<0與直線SKIPIF1<0,SKIPIF1<0分別交于SKIPIF1<0、SKIPIF1<0兩點(diǎn),SKIPIF1<0的面積是否為定值?若是,求出該定值,若不是,請(qǐng)說明理由.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)由SKIPIF1<0可知,SKIPIF1<0,因?yàn)榫€段SKIPIF1<0的垂直平分線SKIPIF1<0與直線SKIPIF1<0交于點(diǎn)SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以由雙曲線的定義可知,點(diǎn)SKIPIF1<0的軌跡是以SKIPIF1<0、SKIPIF1<0為焦點(diǎn)的雙曲線,所以點(diǎn)SKIPIF1<0的方程為SKIPIF1<0.
(2)設(shè)直線斜率為SKIPIF1<0,設(shè)直線SKIPIF1<0方程為SKIPIF1<0,因?yàn)镾KIPIF1<0與直線SKIPIF1<0,SKIPIF1<0分別交于SKIPIF1<0、SKIPIF1<0兩點(diǎn),所以SKIPIF1<0,聯(lián)立方程組SKIPIF1<0得SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,因?yàn)橹本€SKIPIF1<0與曲線SKIPIF1<0恰有一個(gè)公共點(diǎn),所以直線SKIPIF1<0與曲線SKIPIF1<0相切,由SKIPIF1<0,得SKIPIF1<0,聯(lián)立方程組SKIPIF1<0得SKIPIF1<0.不直線SKIPIF1<0與SKIPIF1<0的交點(diǎn)為SKIPIF1<0,則SKIPIF1<0.同理可求SKIPIF1<0,所以SKIPIF1<0.因?yàn)樵c(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離SKIPIF1<0,所以SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,當(dāng)直線SKIPIF1<0的斜率不存在時(shí),直線SKIPIF1<0的方程為SKIPIF1<0,又漸近線方程為:SKIPIF1<0,此時(shí)SKIPIF1<0,SKIPIF1<0.故SKIPIF1<0的面積為定值,且定值為SKIPIF1<0.
【典例3】(2023·廣東佛山·??寄M預(yù)測(cè))已知點(diǎn)SKIPIF1<0為直線SKIPIF1<0上的動(dòng)點(diǎn),過點(diǎn)SKIPIF1<0作射線SKIPIF1<0(點(diǎn)SKIPIF1<0位于直線SKIPIF1<0的右側(cè))使得SKIPIF1<0,設(shè)線段SKIPIF1<0的中點(diǎn)為SKIPIF1<0,設(shè)直線SKIPIF1<0與SKIPIF1<0軸的交點(diǎn)為SKIPIF1<0.(1)求動(dòng)點(diǎn)SKIPIF1<0的軌跡SKIPIF1<0的方程.(2)設(shè)過點(diǎn)SKIPIF1<0的兩條射線分別與曲線SKIPIF1<0交于點(diǎn)SKIPIF1<0,設(shè)直線SKIPIF1<0的斜率分別為SKIPIF1<0,若SKIPIF1<0,請(qǐng)判斷直線SKIPIF1<0的斜率是否為定值以及其是否過定點(diǎn),若斜率為定值,請(qǐng)計(jì)算出定值;若過定點(diǎn),請(qǐng)計(jì)算出定點(diǎn).【答案】(1)SKIPIF1<0(2)是,定值1;定點(diǎn)SKIPIF1<0.【詳解】(1)設(shè)點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,點(diǎn)SKIPIF1<0,其中SKIPIF1<0、SKIPIF1<0的中點(diǎn)為SKIPIF1<0,由此可得直線SKIPIF1<0的方程為SKIPIF1<0,可得點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,再結(jié)合SKIPIF1<0可得SKIPIF1<0,整理得SKIPIF1<0,所以動(dòng)點(diǎn)SKIPIF1<0的軌跡SKIPIF1<0的方程為:SKIPIF1<0.(2)設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立直線SKIPIF1<0與SKIPIF1<0的方程可得:SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,根據(jù)韋達(dá)定理可得SKIPIF1<0,SKIPIF1<0,其中SKIPIF1<0,結(jié)合條件可得:SKIPIF1<0,整理可得SKIPIF1<0,結(jié)合直線SKIPIF1<0的方程可化簡(jiǎn)為:SKIPIF1<0,代入韋達(dá)定理可得SKIPIF1<0,通過分解因式可得SKIPIF1<0即可得SKIPIF1<0或SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),直線SKIPIF1<0的斜率為定值SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),直線SKIPIF1<0恒過定點(diǎn)SKIPIF1<0.【變式1】(2023春·湖南湘潭·高二校聯(lián)考期末)已知直線SKIPIF1<0過點(diǎn)SKIPIF1<0且與圓SKIPIF1<0:SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),過SKIPIF1<0的中點(diǎn)SKIPIF1<0作垂直于SKIPIF1<0的直線交SKIPIF1<0于點(diǎn)SKIPIF1<0,記SKIPIF1<0的軌跡為曲線SKIPIF1<0.(1)求曲線SKIPIF1<0的方程(2)設(shè)曲線SKIPIF1<0與SKIPIF1<0軸的交點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0關(guān)于直線SKIPIF1<0的對(duì)稱點(diǎn)分別為SKIPIF1<0,過點(diǎn)SKIPIF1<0的直線SKIPIF1<0與曲線SKIPIF1<0交于SKIPIF1<0兩點(diǎn),直線SKIPIF1<0相交于點(diǎn)SKIPIF1<0.請(qǐng)判斷SKIPIF1<0的面積是否為定值?若是,求出這個(gè)值;若不是,請(qǐng)說明理由.【答案】(1)SKIPIF1<0(2)是,8【詳解】(1)由題意得SKIPIF1<0,圓SKIPIF1<0:SKIPIF1<0的圓心為SKIPIF1<0,半徑為SKIPIF1<0,
因?yàn)镾KIPIF1<0為SKIPIF1<0中點(diǎn),且SKIPIF1<0,所以SKIPIF1<0是線段SKIPIF1<0的垂直平分線,所以SKIPIF1<0,所以SKIPIF1<0,所以點(diǎn)SKIPIF1<0的軌跡即曲線SKIPIF1<0是以SKIPIF1<0,SKIPIF1<0為焦點(diǎn)的橢圓,設(shè)曲線SKIPIF1<0:SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0.則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0故曲線SKIPIF1<0:SKIPIF1<0(2)SKIPIF1<0的面積是定值,理由如下:
由題意易得SKIPIF1<0,SKIPIF1<0,且直線SKIPIF1<0的斜率不為0,可設(shè)直線SKIPIF1<0:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0恒成立,所以SKIPIF1<0,則SKIPIF1<0.直線SKIPIF1<0的方程為:SKIPIF1<0,直線SKIPIF1<0的方程為:SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0.又SKIPIF1<0SKIPIF1<0,解得SKIPIF1<0.故點(diǎn)SKIPIF1<0在直線SKIPIF1<0上,所以SKIPIF1<0到SKIPIF1<0的距離SKIPIF1<0,因?yàn)辄c(diǎn)SKIPIF1<0關(guān)于直線SKIPIF1<0的對(duì)稱點(diǎn)分別為SKIPIF1<0,所以設(shè)SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,同理可得SKIPIF1<0因此SKIPIF1<0的面積是定值,為SKIPIF1<0.【變式2】(2023春·安徽·高二馬鞍山二中校聯(lián)考階段練習(xí))已知雙曲線的標(biāo)準(zhǔn)方程為SKIPIF1<0,其中點(diǎn)SKIPIF1<0為右焦點(diǎn),過點(diǎn)SKIPIF1<0作垂直于SKIPIF1<0軸的垂線,在第一象限與雙曲線相交于點(diǎn)SKIPIF1<0,過點(diǎn)SKIPIF1<0作雙曲線漸近線的垂線,垂足為SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0.(1)求雙曲線的標(biāo)準(zhǔn)方程;(2)過點(diǎn)SKIPIF1<0作SKIPIF1<0的平行線SKIPIF1<0,在直線SKIPIF1<0上任取一點(diǎn)SKIPIF1<0,連接SKIPIF1<0與雙曲線相交于點(diǎn)SKIPIF1<0,求證點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離是定值.【答案】(1)SKIPIF1<0(2)證明見解析【詳解】(1)解:由雙曲線SKIPIF1<0,可得焦點(diǎn)SKIPIF1<0,其中一條漸近線方程為SKIPIF1<0,則點(diǎn)SKIPIF1<0到漸近線的距離為SKIPIF1<0,解得SKIPIF1<0,又由SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0,故雙曲線的標(biāo)準(zhǔn)方程為SKIPIF1<0.(2)解:由雙曲線SKIPIF1<0,可得SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0,則直線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0,由題意,設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,由點(diǎn)SKIPIF1<0在直線SKIPIF1<0上,可設(shè)點(diǎn)SKIPIF1<0,又由SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0,即直線SKIPIF1<0的方程為SKIPIF1<0,設(shè)SKIPIF1<0,由點(diǎn)SKIPIF1<0共線,可得SKIPIF1<0,即SKIPIF1<0,得SKIPIF1<0,即點(diǎn)SKIPIF1<0,則點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0.即點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離為定值.
【變式3】(2023春·廣東·高二校聯(lián)考期末)設(shè)點(diǎn)F為拋物線C:SKIPIF1<0的焦點(diǎn),過點(diǎn)F且斜率為SKIPIF1<0的直線與C交于A,B兩點(diǎn)SKIPIF1<0(O為坐標(biāo)原點(diǎn))(1)求拋物線C的方程;(2)過點(diǎn)SKIPIF1<0作兩條斜率分別為SKIPIF1<0,SKIPIF1<0的直線SKIPIF1<0,SKIPIF1<0,它們分別與拋物線C交于點(diǎn)P,Q和R,S.已知SKIPIF1<0,問:是否存在實(shí)數(shù)SKIPIF1<0,使得SKIPIF1<0為定值?若存在,求SKIPIF1<0的值,若不存在,請(qǐng)說明理由.【答案】(1)SKIPIF1<0;(2)存在,SKIPIF1<0.【詳解】(1)拋物線C:SKIPIF1<0的焦點(diǎn)SKIPIF1<0,直線SKIPIF1<0的方程為SKIPIF1<0,由SKIPIF1<0消去y并整理得:SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,因此SKIPIF1<0,而SKIPIF1<0,解得SKIPIF1<0,所以拋物線C的方程為SKIPIF1<0.
(2)存在SKIPIF1<0,使得SKIPIF1<0為定值.依題意,直線SKIPIF1<0,直線SKIPIF1<0,由SKIPIF1<0消去y并整理得SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,同理SKIPIF1<0,且有SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,而SKIPIF1<0,則SKIPIF1<0,所以存在SKIPIF1<0,使得SKIPIF1<0為定值0.題型03圓錐曲線中的定直線問題【典例1】(2023·內(nèi)蒙古赤峰·赤峰二中校聯(lián)考模擬預(yù)測(cè))橢圓E的中心為坐標(biāo)原點(diǎn),坐標(biāo)軸為對(duì)稱軸,左、右頂點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0在橢圓E上.(1)求橢圓E的方程.(2)過點(diǎn)SKIPIF1<0的直線l與橢圓E交于P,Q兩點(diǎn)(異于點(diǎn)A,B),記直線AP與直線BQ交于點(diǎn)M,試問點(diǎn)M是否在一條定直線上?若是,求出該定直線方程;若不是,請(qǐng)說明理由.【答案】(1)SKIPIF1<0(2)點(diǎn)M在定直線SKIPIF1<0上【詳解】(1)設(shè)橢圓E的方程為SKIPIF1<0.則SKIPIF1<0,解得SKIPIF1<0,故橢圓E的方程為SKIPIF1<0.(2)依題可設(shè)直線l的方程為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.聯(lián)立方程組SKIPIF1<0,整理得SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0直線AP的方程為SKIPIF1<0,直線BQ的方程為SKIPIF1<0,聯(lián)立方程組SKIPIF1<0,得SKIPIF1<0由SKIPIF1<0,得SKIPIF1<0,得SKIPIF1<0.所以SKIPIF1<0.故點(diǎn)M在定直線SKIPIF1<0上.【典例2】(2023·全國(guó)·高三專題練習(xí))已知雙曲線C:SKIPIF1<0,直線l在x軸上方與x軸平行,交雙曲線C于A,B兩點(diǎn),直線l交y軸于點(diǎn)D.當(dāng)l經(jīng)過C的焦點(diǎn)時(shí),點(diǎn)A的坐標(biāo)為SKIPIF1<0.(1)求C的方程;(2)設(shè)OD的中點(diǎn)為M,是否存在定直線l,使得經(jīng)過M的直線與C交于P,Q,與線段AB交于點(diǎn)N,SKIPIF1<0,SKIPIF1<0均成立;若存在,求出l的方程;若不存在,請(qǐng)說明理由.【答案】(1)SKIPIF1<0(2)存在,SKIPIF1<0【詳解】(1)由已知C:SKIPIF1<0,點(diǎn)A的坐標(biāo)為SKIPIF1<0,得SKIPIF1<0,焦點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.所以SKIPIF1<0,SKIPIF1<0,故C:SKIPIF1<0.(2)設(shè)l的方程為SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,由已知直線PQ斜率存在,設(shè)直線PQ的方程為SKIPIF1<0,故SKIPIF1<0.與雙曲線方程聯(lián)立得:SKIPIF1<0,由已知得SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0①由SKIPIF1<0,SKIPIF1<0得:SKIPIF1<0,SKIPIF1<0,消去SKIPIF1<0得:SKIPIF1<0,即SKIPIF1<0②由①②得:SKIPIF1<0,由已知SKIPIF1<0,故存在定直線l:SKIPIF1<0滿足條件.【典例3】(2023春·湖北·高二校聯(lián)考階段練習(xí))拋物線的弦與在弦兩端點(diǎn)處的切線所圍成的三角形被稱為阿基米德三角形對(duì)于拋物線SKIPIF1<0給出如下三個(gè)條件:?①焦點(diǎn)為SKIPIF1<0②準(zhǔn)線為SKIPIF1<0③與直線SKIPIF1<0相交所得弦長(zhǎng)為SKIPIF1<0.(1)從以上三個(gè)條件中選擇一個(gè),求拋物線SKIPIF1<0的方程SKIPIF1<0(2)已知SKIPIF1<0是SKIPIF1<0中拋物線的阿基米德三角形,點(diǎn)SKIPIF1<0是拋物線SKIPIF1<0在弦SKIPIF1<0兩端點(diǎn)處的兩條切線的交點(diǎn),若直線SKIPIF1<0經(jīng)過點(diǎn)SKIPIF1<0,試判斷點(diǎn)SKIPIF1<0是否在一條定直線上SKIPIF1<0如果是,求出定直線方程SKIPIF1<0如果不是,請(qǐng)說明理由.【答案】(1)SKIPIF1<0(2)點(diǎn)SKIPIF1<0在直線SKIPIF1<0上【詳解】(1)SKIPIF1<0即為SKIPIF1<0,若選①,SKIPIF1<0拋物線方程為SKIPIF1<0,選②,由準(zhǔn)線為SKIPIF1<0知,SKIPIF1<0,解得SKIPIF1<0,所以拋物線方程為SKIPIF1<0.選③,SKIPIF1<0代入SKIPIF1<0,解得SKIPIF1<0,所以弦長(zhǎng)為SKIPIF1<0,解得SKIPIF1<0,所以拋物線方程為SKIPIF1<0.(2)令SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0即為SKIPIF1<0,又SKIPIF1<0即SKIPIF1<0,同理,SKIPIF1<0,SKIPIF1<0,而SKIPIF1<0過點(diǎn)SKIPIF1<0即SKIPIF1<0SKIPIF1<0點(diǎn)SKIPIF1<0在直線SKIPIF1<0上【變式1】(2023·全國(guó)·高三專題練習(xí))已知A,B為橢圓SKIPIF1<0左右兩個(gè)頂點(diǎn),動(dòng)點(diǎn)D是橢圓上異于A,B的一點(diǎn),點(diǎn)F是右焦點(diǎn).當(dāng)點(diǎn)D的坐標(biāo)為SKIPIF1<0時(shí),SKIPIF1<0.(1)求橢圓的方程.(2)已知點(diǎn)C的坐標(biāo)為SKIPIF1<0,直線CD與橢圓交于另一點(diǎn)E,判斷直線AD與直線BE的交點(diǎn)P是否在一定直線上,如果是,求出該直線方程;如果不是,請(qǐng)說明理由.【答案】(1)SKIPIF1<0(2)直線AD與直線BE的交點(diǎn)在定直線SKIPIF1<0上【詳解】(1)設(shè)橢圓的右焦點(diǎn)為SKIPIF1<0,左焦點(diǎn)為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴橢圓的方程為SKIPIF1<0.(2)由題設(shè),直線DE斜率一定存在,設(shè)SKIPIF1<0的直線方程為SKIPIF1<0.聯(lián)立橢圓方程,消去SKIPIF1<0得SKIPIF1<0.設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.∴SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,∴直線AD的方程為SKIPIF1<0,直線BE的方程為SKIPIF1<0.聯(lián)立得SKIPIF1<0,∴SKIPIF1<0.又∵SKIPIF1<0,∴SKIPIF1<0.∴直線AD與直線BE的交點(diǎn)在定直線SKIPIF1<0上.【變式2】(2023·全國(guó)·高三專題練習(xí))已知雙曲線SKIPIF1<0:SKIPIF1<0的離心率為SKIPIF1<0,其左、右頂點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,右焦點(diǎn)為SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的左支上不同于SKIPIF1<
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版監(jiān)理人員勞動(dòng)合同
- 二零二五版委派保安服務(wù)合同
- 二零二五兼并與收購融資合同范例
- 二零二五影視公司演員聘用合同
- 二零二五股東分紅協(xié)議書股權(quán)分紅協(xié)議書
- 股份轉(zhuǎn)讓協(xié)議模板二零二五年
- 輔導(dǎo)班家長(zhǎng)協(xié)議二零二五年
- 小學(xué)生防溺水直播課件教學(xué)
- 關(guān)于教師培訓(xùn)
- 2025物業(yè)管理合同范本-版-電子檔
- 2023年雄安宣武醫(yī)院招聘工作人員考試真題及答案
- NB-T 47013.15-2021 承壓設(shè)備無損檢測(cè) 第15部分:相控陣超聲檢測(cè)
- 左側(cè)基底節(jié)腦出血教學(xué)查房課件
- 內(nèi)部控制應(yīng)用指引《發(fā)展戰(zhàn)略》課件
- 勞務(wù)派遣費(fèi)用自查報(bào)告
- 普外科乳房膿腫切開引流術(shù)技術(shù)操作規(guī)范
- 投標(biāo)貨物的包裝、運(yùn)輸方案
- 中藥藥效物質(zhì)基礎(chǔ)研究
- 截肢術(shù)后護(hù)理查房
- 安全工程專業(yè)英語術(shù)語
- 邊坡支護(hù)腳手架專項(xiàng)施工方案
評(píng)論
0/150
提交評(píng)論