吉林省松原市前郭爾羅斯蒙古族自治縣重點(diǎn)達(dá)標(biāo)名校2024屆中考數(shù)學(xué)五模試卷含解析_第1頁(yè)
吉林省松原市前郭爾羅斯蒙古族自治縣重點(diǎn)達(dá)標(biāo)名校2024屆中考數(shù)學(xué)五模試卷含解析_第2頁(yè)
吉林省松原市前郭爾羅斯蒙古族自治縣重點(diǎn)達(dá)標(biāo)名校2024屆中考數(shù)學(xué)五模試卷含解析_第3頁(yè)
吉林省松原市前郭爾羅斯蒙古族自治縣重點(diǎn)達(dá)標(biāo)名校2024屆中考數(shù)學(xué)五模試卷含解析_第4頁(yè)
吉林省松原市前郭爾羅斯蒙古族自治縣重點(diǎn)達(dá)標(biāo)名校2024屆中考數(shù)學(xué)五模試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩18頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

吉林省松原市前郭爾羅斯蒙古族自治縣重點(diǎn)達(dá)標(biāo)名校2024屆中考數(shù)學(xué)五模試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.|–|的倒數(shù)是()A.–2 B.– C. D.22.如圖,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,則∠BCE等于()A.40° B.70° C.60° D.50°3.如圖,?ABCD對(duì)角線AC與BD交于點(diǎn)O,且AD=3,AB=5,在AB延長(zhǎng)線上取一點(diǎn)E,使BE=AB,連接OE交BC于F,則BF的長(zhǎng)為()A. B. C. D.14.如圖,把一塊直角三角板的直角頂點(diǎn)放在直尺的一邊上,若∠1=50°,則∠2的度數(shù)為().A.50° B.40° C.30° D.25°5.如圖,某小區(qū)計(jì)劃在一塊長(zhǎng)為31m,寬為10m的矩形空地上修建三條同樣寬的道路,剩余的空地上種植草坪,使草坪的面積為570m1.若設(shè)道路的寬為xm,則下面所列方程正確的是()A.(31﹣1x)(10﹣x)=570 B.31x+1×10x=31×10﹣570C.(31﹣x)(10﹣x)=31×10﹣570 D.31x+1×10x﹣1x1=5706.甲、乙兩班舉行電腦漢字輸入比賽,參賽學(xué)生每分鐘輸入漢字個(gè)數(shù)的統(tǒng)計(jì)結(jié)果如下表:班級(jí)參加人數(shù)平均數(shù)中位數(shù)方差甲55135149191乙55135151110某同學(xué)分析上表后得出如下結(jié)論:①甲、乙兩班學(xué)生的平均成績(jī)相同;②乙班優(yōu)秀的人數(shù)多于甲班優(yōu)秀的人數(shù)(每分鐘輸入漢字≥150個(gè)為優(yōu)秀);③甲班成績(jī)的波動(dòng)比乙班大.上述結(jié)論中,正確的是()A.①② B.②③ C.①③ D.①②③7.下列每組數(shù)分別是三根小木棒的長(zhǎng)度,用它們能擺成三角形的是()A.3cm,4cm,8cmB.8cm,7cm,15cmC.13cm,12cm,20cmD.5cm,5cm,11cm8.我國(guó)的釣魚(yú)島面積約為4400000m2,用科學(xué)記數(shù)法表示為()A.4.4×106B.44×105C.4×106D.0.44×1079.函數(shù)y=x2+bx+c與y=x的圖象如圖所示,有以下結(jié)論:①b2﹣4c>1;②b+c+1=1;③3b+c+6=1;④當(dāng)1<x<3時(shí),x2+(b﹣1)x+c<1.其中正確的個(gè)數(shù)為A.1 B.2 C.3 D.410.函數(shù)在同一直角坐標(biāo)系內(nèi)的圖象大致是()A. B. C. D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.對(duì)于實(shí)數(shù)a,b,我們定義符號(hào)max{a,b}的意義為:當(dāng)a≥b時(shí),max{a,b}=a;當(dāng)a<b時(shí),max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若關(guān)于x的函數(shù)為y=max{x+3,﹣x+1},則該函數(shù)的最小值是_____.12.計(jì)算的結(jié)果是____.13.如圖,在平面直角坐標(biāo)系中,矩形OACB的頂點(diǎn)O是坐標(biāo)原點(diǎn),頂點(diǎn)A、B分別在x軸、y軸的正半軸上,OA=3,OB=4,D為邊OB的中點(diǎn).若E為邊OA上的一個(gè)動(dòng)點(diǎn),當(dāng)△CDE的周長(zhǎng)最小時(shí),則點(diǎn)E的坐標(biāo)____________.14.若一次函數(shù)y=-2x+b(b為常數(shù))的圖象經(jīng)過(guò)第二、三、四象限,則b的值可以是_________.(寫(xiě)出一個(gè)即可)15.如圖,在矩形ABCD中,AB=,AD=1,把該矩形繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α度得矩形AB′C′D′,點(diǎn)C′落在AB的延長(zhǎng)線上,則圖中陰影部分的面積是_____.16.如圖,在△ABC中,AB=AC=15,點(diǎn)D是BC邊上的一動(dòng)點(diǎn)(不與B,C重合),∠ADE=∠B=∠α,DE交AB于點(diǎn)E,且tan∠α=34,有以下的結(jié)論:①△ADE∽△ACD;②當(dāng)CD=9時(shí),△ACD與△DBE全等;③△BDE為直角三角形時(shí),BD為12或214;④0<BE≤三、解答題(共8題,共72分)17.(8分)如圖,在規(guī)格為8×8的邊長(zhǎng)為1個(gè)單位的正方形網(wǎng)格中(每個(gè)小正方形的邊長(zhǎng)為1),△ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,且直線m、n互相垂直.(1)畫(huà)出△ABC關(guān)于直線n的對(duì)稱(chēng)圖形△A′B′C′;(2)直線m上存在一點(diǎn)P,使△APB的周長(zhǎng)最??;①在直線m上作出該點(diǎn)P;(保留畫(huà)圖痕跡)②△APB的周長(zhǎng)的最小值為.(直接寫(xiě)出結(jié)果)18.(8分)在平面直角坐標(biāo)系xOy中,點(diǎn)M的坐標(biāo)為,點(diǎn)N的坐標(biāo)為,且,,我們規(guī)定:如果存在點(diǎn)P,使是以線段MN為直角邊的等腰直角三角形,那么稱(chēng)點(diǎn)P為點(diǎn)M、N的“和諧點(diǎn)”.(1)已知點(diǎn)A的坐標(biāo)為,①若點(diǎn)B的坐標(biāo)為,在直線AB的上方,存在點(diǎn)A,B的“和諧點(diǎn)”C,直接寫(xiě)出點(diǎn)C的坐標(biāo);②點(diǎn)C在直線x=5上,且點(diǎn)C為點(diǎn)A,B的“和諧點(diǎn)”,求直線AC的表達(dá)式.(2)⊙O的半徑為r,點(diǎn)為點(diǎn)、的“和諧點(diǎn)”,且DE=2,若使得與⊙O有交點(diǎn),畫(huà)出示意圖直接寫(xiě)出半徑r的取值范圍.19.(8分)如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y=(n≠0)的圖象交于第二、四象限內(nèi)的A、B兩點(diǎn),與x軸交于點(diǎn)C,點(diǎn)B坐標(biāo)為(m,﹣1),AD⊥x軸,且AD=3,tan∠AOD=.求該反比例函數(shù)和一次函數(shù)的解析式;求△AOB的面積;點(diǎn)E是x軸上一點(diǎn),且△AOE是等腰三角形,請(qǐng)直接寫(xiě)出所有符合條件的E點(diǎn)的坐標(biāo).20.(8分)如圖,在平面直角坐標(biāo)系中,等邊三角形ABC的頂點(diǎn)B與原點(diǎn)O重合,點(diǎn)C在x軸上,點(diǎn)C坐標(biāo)為(6,0),等邊三角形ABC的三邊上有三個(gè)動(dòng)點(diǎn)D、E、F(不考慮與A、B、C重合),點(diǎn)D從A向B運(yùn)動(dòng),點(diǎn)E從B向C運(yùn)動(dòng),點(diǎn)F從C向A運(yùn)動(dòng),三點(diǎn)同時(shí)運(yùn)動(dòng),到終點(diǎn)結(jié)束,且速度均為1cm/s,設(shè)運(yùn)動(dòng)的時(shí)間為ts,解答下列問(wèn)題:(1)求證:如圖①,不論t如何變化,△DEF始終為等邊三角形.(2)如圖②過(guò)點(diǎn)E作EQ∥AB,交AC于點(diǎn)Q,設(shè)△AEQ的面積為S,求S與t的函數(shù)關(guān)系式及t為何值時(shí)△AEQ的面積最大?求出這個(gè)最大值.(3)在(2)的條件下,當(dāng)△AEQ的面積最大時(shí),平面內(nèi)是否存在一點(diǎn)P,使A、D、Q、P構(gòu)成的四邊形是菱形,若存在請(qǐng)直接寫(xiě)出P坐標(biāo),若不存在請(qǐng)說(shuō)明理由?21.(8分)先化簡(jiǎn),再求值:(x+1y)1﹣(1y+x)(1y﹣x)﹣1x1,其中x=+1,y=﹣1.22.(10分)某超市開(kāi)展早市促銷(xiāo)活動(dòng),為早到的顧客準(zhǔn)備一份簡(jiǎn)易早餐,餐品為四樣A:菜包、B:面包、C:雞蛋、D:油條.超市約定:隨機(jī)發(fā)放,早餐一人一份,一份兩樣,一樣一個(gè).按約定,“某顧客在該天早餐得到兩個(gè)雞蛋”是事件(填“隨機(jī)”、“必然”或“不可能”);請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法,求出某顧客該天早餐剛好得到菜包和油條的概率.23.(12分)已知:如圖,在半徑為2的扇形中,°,點(diǎn)C在半徑OB上,AC的垂直平分線交OA于點(diǎn)D,交弧AB于點(diǎn)E,聯(lián)結(jié).(1)若C是半徑OB中點(diǎn),求的正弦值;(2)若E是弧AB的中點(diǎn),求證:;(3)聯(lián)結(jié)CE,當(dāng)△DCE是以CD為腰的等腰三角形時(shí),求CD的長(zhǎng).24.(1)計(jì)算:3tan30°+|2﹣|+()﹣1﹣(3﹣π)0﹣(﹣1)2018.(2)先化簡(jiǎn),再求值:(x﹣)÷,其中x=,y=﹣1.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解題分析】

根據(jù)絕對(duì)值的性質(zhì),可化簡(jiǎn)絕對(duì)值,根據(jù)倒數(shù)的意義,可得答案.【題目詳解】|?|=,的倒數(shù)是2;∴|?|的倒數(shù)是2,故選D.【題目點(diǎn)撥】本題考查了實(shí)數(shù)的性質(zhì),分子分母交換位置是求一個(gè)數(shù)倒數(shù)的關(guān)鍵.2、D【解題分析】

根據(jù)線段垂直平分線性質(zhì)得出AE=CE,推出∠A=∠ACE=30°,代入∠BCE=∠ACB-∠ACE求出即可.【題目詳解】∵DE垂直平分AC交AB于E,∴AE=CE,∴∠A=∠ACE,∵∠A=30°,∴∠ACE=30°,∵∠ACB=80°,∴∠BCE=∠ACB-∠ACE=50°,故選D.【題目點(diǎn)撥】本題考查了等腰三角形的性質(zhì),線段垂直平分線性質(zhì)的應(yīng)用,注意:線段垂直平分線上的點(diǎn)到線段兩個(gè)端點(diǎn)的距離相等.3、A【解題分析】

首先作輔助線:取AB的中點(diǎn)M,連接OM,由平行四邊形的性質(zhì)與三角形中位線的性質(zhì),即可求得:△EFB∽△EOM與OM的值,利用相似三角形的對(duì)應(yīng)邊成比例即可求得BF的值.【題目詳解】取AB的中點(diǎn)M,連接OM,∵四邊形ABCD是平行四邊形,∴AD∥BC,OB=OD,∴OM∥AD∥BC,OM=AD=×3=,∴△EFB∽△EOM,∴,∵AB=5,BE=AB,∴BE=2,BM=,∴EM=+2=,∴,∴BF=,故選A.【題目點(diǎn)撥】此題考查了平行四邊形的性質(zhì)、相似三角形的判定與性質(zhì)等知識(shí).解此題的關(guān)鍵是準(zhǔn)確作出輔助線,合理應(yīng)用數(shù)形結(jié)合思想解題.4、B【解題分析】

解:如圖,由兩直線平行,同位角相等,可求得∠3=∠1=50°,根據(jù)平角為180°可得,∠2=90°﹣50°=40°.故選B.【題目點(diǎn)撥】本題考查平行線的性質(zhì),掌握兩直線平行,同位角相等是解題關(guān)鍵.5、A【解題分析】六塊矩形空地正好能拼成一個(gè)矩形,設(shè)道路的寬為xm,根據(jù)草坪的面積是570m1,即可列出方程:(31?1x)(10?x)=570,故選A.6、D【解題分析】分析:根據(jù)平均數(shù)、中位數(shù)、方差的定義即可判斷;詳解:由表格可知,甲、乙兩班學(xué)生的成績(jī)平均成績(jī)相同;根據(jù)中位數(shù)可以確定,乙班優(yōu)秀的人數(shù)多于甲班優(yōu)秀的人數(shù);根據(jù)方差可知,甲班成績(jī)的波動(dòng)比乙班大.故①②③正確,故選D.點(diǎn)睛:本題考查平均數(shù)、中位數(shù)、方差等知識(shí),解題的關(guān)鍵是熟練掌握基本知識(shí),屬于中考??碱}型.7、C【解題分析】

根據(jù)三角形的三邊關(guān)系“任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”,進(jìn)行分析.【題目詳解】A、3+4<8,不能組成三角形;B、8+7=15,不能組成三角形;C、13+12>20,能夠組成三角形;D、5+5<11,不能組成三角形.故選:C.【題目點(diǎn)撥】本題考查了三角形的三邊關(guān)系,關(guān)鍵是靈活運(yùn)用三角形三邊關(guān)系.8、A【解題分析】4400000=4.4×1.故選A.點(diǎn)睛:科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).9、B【解題分析】分析:∵函數(shù)y=x2+bx+c與x軸無(wú)交點(diǎn),∴b2﹣4c<1;故①錯(cuò)誤。當(dāng)x=1時(shí),y=1+b+c=1,故②錯(cuò)誤?!弋?dāng)x=3時(shí),y=9+3b+c=3,∴3b+c+6=1。故③正確?!弋?dāng)1<x<3時(shí),二次函數(shù)值小于一次函數(shù)值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<1。故④正確。綜上所述,正確的結(jié)論有③④兩個(gè),故選B。10、C【解題分析】

根據(jù)a、b的符號(hào),針對(duì)二次函數(shù)、一次函數(shù)的圖象位置,開(kāi)口方向,分類(lèi)討論,逐一排除.【題目詳解】當(dāng)a>0時(shí),二次函數(shù)的圖象開(kāi)口向上,一次函數(shù)的圖象經(jīng)過(guò)一、三或一、二、三或一、三、四象限,故A、D不正確;由B、C中二次函數(shù)的圖象可知,對(duì)稱(chēng)軸x=->0,且a>0,則b<0,但B中,一次函數(shù)a>0,b>0,排除B.故選C.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、2【解題分析】試題分析:當(dāng)x+3≥﹣x+1,即:x≥﹣1時(shí),y=x+3,∴當(dāng)x=﹣1時(shí),ymin=2,當(dāng)x+3<﹣x+1,即:x<﹣1時(shí),y=﹣x+1,∵x<﹣1,∴﹣x>1,∴﹣x+1>2,∴y>2,∴ymin=2,12、【解題分析】原式=,故答案為.13、(1,0)【解題分析】分析:由于C、D是定點(diǎn),則CD是定值,如果的周長(zhǎng)最小,即有最小值.為此,作點(diǎn)D關(guān)于x軸的對(duì)稱(chēng)點(diǎn)D′,當(dāng)點(diǎn)E在線段CD′上時(shí)的周長(zhǎng)最?。斀猓喝鐖D,作點(diǎn)D關(guān)于x軸的對(duì)稱(chēng)點(diǎn)D′,連接CD′與x軸交于點(diǎn)E,連接DE.若在邊OA上任取點(diǎn)E′與點(diǎn)E不重合,連接CE′、DE′、D′E′由DE′+CE′=D′E′+CE′>CD′=D′E+CE=DE+CE,可知△CDE的周長(zhǎng)最小,∵在矩形OACB中,OA=3,OB=4,D為OB的中點(diǎn),∴BC=3,D′O=DO=2,D′B=6,∵OE∥BC,∴Rt△D′OE∽R(shí)t△D′BC,有∴OE=1,∴點(diǎn)E的坐標(biāo)為(1,0).故答案為:(1,0).點(diǎn)睛:考查軸對(duì)稱(chēng)-最短路線問(wèn)題,坐標(biāo)與圖形性質(zhì),相似三角形的判定與性質(zhì)等,找出點(diǎn)E的位置是解題的關(guān)鍵.14、-1【解題分析】試題分析:根據(jù)一次函數(shù)的圖象經(jīng)過(guò)第二、三、四象限,可以得出k<1,b<1,隨便寫(xiě)出一個(gè)小于1的b值即可.∵一次函數(shù)y=﹣2x+b(b為常數(shù))的圖象經(jīng)過(guò)第二、三、四象限,∴k<1,b<1.考點(diǎn):一次函數(shù)圖象與系數(shù)的關(guān)系15、【解題分析】

∵在矩形ABCD中,AB=,∠DAC=60°,∴DC=,AD=1.由旋轉(zhuǎn)的性質(zhì)可知:D′C′=,AD′=1,∴tan∠D′AC′==,∴∠D′AC′=60°.∴∠BAB′=30°,∴S△AB′C′=×1×=,S扇形BAB′==.S陰影=S△AB′C′-S扇形BAB′=-.故答案為-.【題目點(diǎn)撥】錯(cuò)因分析

中檔題.失分原因有2點(diǎn):(1)不能準(zhǔn)確地將陰影部分面積轉(zhuǎn)化為易求特殊圖形的面積;(2)不能根據(jù)矩形的邊求出α的值.16、②③.【解題分析】試題解析:①∵∠ADE=∠B,∠DAE=∠BAD,∴△ADE∽△ABD;故①錯(cuò)誤;②作AG⊥BC于G,∵∠ADE=∠B=α,tan∠α=34∴AGBG∴BGAB∴cosα=45∵AB=AC=15,∴BG=1,∴BC=24,∵CD=9,∴BD=15,∴AC=BD.∵∠ADE+∠BDE=∠C+∠DAC,∠ADE=∠C=α,∴∠EDB=∠DAC,在△ACD與△DBE中,∠DAC=∠EDB∠B=∠C∴△ACD≌△BDE(ASA).故②正確;③當(dāng)∠BED=90°時(shí),由①可知:△ADE∽△ABD,∴∠ADB=∠AED,∵∠BED=90°,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,∴∠ADE=∠B=α且tan∠α=34∴BD∴BD=1.當(dāng)∠BDE=90°時(shí),易證△BDE∽△CAD,∵∠BDE=90°,∴∠CAD=90°,∵∠C=α且cosα=45∴cosC=ACCD∴CD=754∵BC=24,∴BD=24-754=即當(dāng)△DCE為直角三角形時(shí),BD=1或214故③正確;④易證得△BDE∽△CAD,由②可知BC=24,設(shè)CD=y,BE=x,∴ACBD∴1524-y整理得:y2-24y+144=144-15x,即(y-1)2=144-15x,∴0<x≤485∴0<BE≤485故④錯(cuò)誤.故正確的結(jié)論為:②③.考點(diǎn):1.相似三角形的判定與性質(zhì);2.全等三角形的判定與性質(zhì).三、解答題(共8題,共72分)17、(1)詳見(jiàn)解析;(2)①詳見(jiàn)解析;②.【解題分析】

(1)根據(jù)軸對(duì)稱(chēng)的性質(zhì),可作出△ABC關(guān)于直線n的對(duì)稱(chēng)圖形△A′B′C′;

(2)①作點(diǎn)B關(guān)于直線m的對(duì)稱(chēng)點(diǎn)B'',連接B''A與x軸的交點(diǎn)為點(diǎn)P;

②由△ABP的周長(zhǎng)=AB+AP+BP=AB+AP+B''P,則當(dāng)AP與PB''共線時(shí),△APB的周長(zhǎng)有最小值.【題目詳解】解:(1)如圖△A′B′C′為所求圖形.(2)①如圖:點(diǎn)P為所求點(diǎn).②∵△ABP的周長(zhǎng)=AB+AP+BP=AB+AP+B''P∴當(dāng)AP與PB''共線時(shí),△APB的周長(zhǎng)有最小值.∴△APB的周長(zhǎng)的最小值A(chǔ)B+AB''=+3故答案為+3【題目點(diǎn)撥】本題考查軸對(duì)稱(chēng)變換,勾股定理,最短路徑問(wèn)題,解題關(guān)鍵是熟練掌握軸對(duì)稱(chēng)的性質(zhì).18、(1)①點(diǎn)C坐標(biāo)為或;②y=x+2或y=-x+3;(2)或【解題分析】

(1)①根據(jù)“和諧點(diǎn)”的定義即可解決問(wèn)題;②首先求出點(diǎn)C坐標(biāo),再利用待定系數(shù)法即可解決問(wèn)題;(2)分兩種情形畫(huà)出圖形即可解決問(wèn)題.【題目詳解】(1)①如圖1.觀察圖象可知滿(mǎn)足條件的點(diǎn)C坐標(biāo)為C(1,5)或C'(3,5);②如圖2.由圖可知,B(5,3).∵A(1,3),∴AB=3.∵△ABC為等腰直角三角形,∴BC=3,∴C1(5,7)或C2(5,﹣1).設(shè)直線AC的表達(dá)式為y=kx+b(k≠0),當(dāng)C1(5,7)時(shí),,∴,∴y=x+2,當(dāng)C2(5,﹣1)時(shí),,∴,∴y=﹣x+3.綜上所述:直線AC的表達(dá)式是y=x+2或y=﹣x+3.(2)分兩種情況討論:①當(dāng)點(diǎn)F在點(diǎn)E左側(cè)時(shí):連接OD.則OD=,∴.②當(dāng)點(diǎn)F在點(diǎn)E右側(cè)時(shí):連接OE,OD.∵E(1,2),D(1,3),∴OE=,OD=,∴.綜上所述:或.【題目點(diǎn)撥】本題考查了一次函數(shù)綜合題、圓的有關(guān)知識(shí)、等腰直角三角形的判定和性質(zhì)、“和諧點(diǎn)”的定義等知識(shí),解題的關(guān)鍵是理解題意,靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題,學(xué)會(huì)用分類(lèi)討論的首先思考問(wèn)題,屬于中考?jí)狠S題.19、(1)y=﹣,y=﹣x+2;(2)6;(3)當(dāng)點(diǎn)E(﹣4,0)或(,0)或(﹣,0)或(﹣,0)時(shí),△AOE是等腰三角形.【解題分析】

(1)利用待定系數(shù)法,即可得到反比例函數(shù)和一次函數(shù)的解析式;(2)利用一次函數(shù)解析式求得C(4,0),即OC=4,即可得出△AOB的面積=×4×3=6;(3)分類(lèi)討論:當(dāng)AO為等腰三角形腰與底時(shí),求出點(diǎn)E坐標(biāo)即可.【題目詳解】(1)如圖,在Rt△OAD中,∠ADO=90°,∵tan∠AOD=,AD=3,∴OD=2,∴A(﹣2,3),把A(﹣2,3)代入y=,考點(diǎn):n=3×(﹣2)=﹣6,所以反比例函數(shù)解析式為:y=﹣,把B(m,﹣1)代入y=﹣,得:m=6,把A(﹣2,3),B(6,﹣1)分別代入y=kx+b,得:,解得:,所以一次函數(shù)解析式為:y=﹣x+2;(2)當(dāng)y=0時(shí),﹣x+2=0,解得:x=4,則C(4,0),所以;(3)當(dāng)OE3=OE2=AO=,即E2(﹣,0),E3(,0);當(dāng)OA=AE1=時(shí),得到OE1=2OD=4,即E1(﹣4,0);當(dāng)AE4=OE4時(shí),由A(﹣2,3),O(0,0),得到直線AO解析式為y=﹣x,中點(diǎn)坐標(biāo)為(﹣1,1.5),令y=0,得到y(tǒng)=﹣,即E4(﹣,0),綜上,當(dāng)點(diǎn)E(﹣4,0)或(,0)或(﹣,0)或(﹣,0)時(shí),△AOE是等腰三角形.【題目點(diǎn)撥】本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問(wèn)題,熟練掌握各自的性質(zhì)是解題的關(guān)鍵.20、(1)證明見(jiàn)解析;(2)當(dāng)t=3時(shí),△AEQ的面積最大為cm2;(3)(3,0)或(6,3)或(0,3)【解題分析】

(1)由三角形ABC為等邊三角形,以及AD=BE=CF,進(jìn)而得出三角形ADF與三角形CFE與三角形BED全等,利用全等三角形對(duì)應(yīng)邊相等得到BF=DF=DE,即可得證;(2)先表示出三角形AEC面積,根據(jù)EQ與AB平行,得到三角形CEQ與三角形ABC相似,利用相似三角形面積比等于相似比的平方表示出三角形CEQ面積,進(jìn)而表示出AEQ面積,利用二次函數(shù)的性質(zhì)求出面積最大值,并求出此時(shí)Q的坐標(biāo)即可;(3)當(dāng)△AEQ的面積最大時(shí),D、E、F都是中點(diǎn),分兩種情形討論即可解決問(wèn)題;【題目詳解】(1)如圖①中,∵C(6,0),∴BC=6在等邊三角形ABC中,AB=BC=AC=6,∠A=∠B=∠C=60°,由題意知,當(dāng)0<t<6時(shí),AD=BE=CF=t,∴BD=CE=AF=6﹣t,∴△ADF≌△CFE≌△BED(SAS),∴EF=DF=DE,∴△DEF是等邊三角形,∴不論t如何變化,△DEF始終為等邊三角形;(2)如圖②中,作AH⊥BC于H,則AH=AB?sin60°=3,∴S△AEC=×3×(6﹣t)=,∵EQ∥AB,∴△CEQ∽△ABC,∴=()2=,即S△CEQ=S△ABC=×9=,∴S△AEQ=S△AEC﹣S△CEQ=﹣=﹣(t﹣3)2+,∵a=﹣<0,∴拋物線開(kāi)口向下,有最大值,∴當(dāng)t=3時(shí),△AEQ的面積最大為cm2,(3)如圖③中,由(2)知,E點(diǎn)為BC的中點(diǎn),線段EQ為△ABC的中位線,當(dāng)AD為菱形的邊時(shí),可得P1(3,0),P3(6,3),當(dāng)AD為對(duì)角線時(shí),P2(0,3),綜上所述,滿(mǎn)足條件的點(diǎn)P坐標(biāo)為(3,0)或(6,3)或(0,3).【題目點(diǎn)撥】本題考查四邊形綜合題、等邊三角形的性質(zhì)和判定、菱形的判定和性質(zhì)、二次函數(shù)的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)構(gòu)建二次函數(shù)解決最值問(wèn)題,學(xué)會(huì)用分類(lèi)討論的思想思考問(wèn)題,屬于中考?jí)狠S題.21、﹣2【解題分析】【分析】先利用完全平方公式、平方差公式進(jìn)行展開(kāi),然后合并同類(lèi)項(xiàng),最后代入x、y的值進(jìn)行計(jì)算即可得.【題目詳解】原式=x1+2xy+2y1﹣(2y1﹣x1)﹣1x1=x1+2xy+2y1﹣2y1+x1﹣1x1=2xy,當(dāng)x=+1,y=﹣1時(shí),原式=2×(+1)×(﹣1)=2×(3﹣2)=﹣2.【題目點(diǎn)撥】本題考查了整式的混合運(yùn)算——化簡(jiǎn)求值,熟練掌握完全平方公式、平方差公式是解題的關(guān)鍵.22、(1)不可能;(2).【解題分析】

(1)利用確定事件和隨機(jī)事件的定義進(jìn)行判斷;(2)畫(huà)樹(shù)狀圖展示所有12種等可能的結(jié)果數(shù),再找出其中某顧客該天早餐剛好得到菜包和油條的結(jié)果數(shù),然后根據(jù)概率公式計(jì)算.【題目詳解】(1)某顧客在該天早餐得到兩個(gè)雞蛋”是不可能事件;故答案為不可能;(2)畫(huà)樹(shù)狀圖:共有12種等可能的結(jié)果數(shù),其中某顧客該天早餐剛好得到菜包和油條的結(jié)果數(shù)為2,所以某顧客該天早餐剛好得到菜包和油條的概率=.【題目點(diǎn)撥】本題考查了列表法與樹(shù)狀圖法:利用列表法或樹(shù)狀圖法展示所有等可能的結(jié)果n,再?gòu)闹羞x出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計(jì)算事件A或事件B的概率.23、(2);(2)詳見(jiàn)解析;(2)當(dāng)是以CD為腰的等腰三角形時(shí),CD的長(zhǎng)為2或.【解題分析】

(2)先求出OCOB=2,設(shè)OD=x,得出CD=AD=OA﹣OD=2﹣x,根據(jù)勾股定理得:(2﹣x)2﹣x2=2求出x,即可得出結(jié)論;(2)先判斷出,進(jìn)而得出∠CBE=∠BCE,再判斷出△OBE∽△EBC,即可得出結(jié)論;(3)分兩種情況:①當(dāng)CD=CE時(shí),判斷出四邊形ADCE是菱形,得出∠OCE=90°.在Rt△OCE中,OC2=OE2﹣CE2=4﹣a2.在Rt△COD中,OC2=CD2﹣OD2=a2﹣(2﹣a)2,建立方程求解即可

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論