2024屆黑龍江省寶泉嶺農墾管理局中考數(shù)學四模試卷含解析_第1頁
2024屆黑龍江省寶泉嶺農墾管理局中考數(shù)學四模試卷含解析_第2頁
2024屆黑龍江省寶泉嶺農墾管理局中考數(shù)學四模試卷含解析_第3頁
2024屆黑龍江省寶泉嶺農墾管理局中考數(shù)學四模試卷含解析_第4頁
2024屆黑龍江省寶泉嶺農墾管理局中考數(shù)學四模試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆黑龍江省寶泉嶺農墾管理局中考數(shù)學四模試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列四張正方形硬紙片,剪去陰影部分后,如果沿虛線折疊,可以圍成一個封閉的長方體包裝盒的是()A. B. C. D.2.如圖,是的直徑,是的弦,連接,,,則與的數(shù)量關系為()A. B.C. D.3.在以下四個圖案中,是軸對稱圖形的是()A. B. C. D.4.有6個相同的立方體搭成的幾何體如圖所示,則它的主視圖是()A. B. C. D.5.下列說法中不正確的是()A.全等三角形的周長相等B.全等三角形的面積相等C.全等三角形能重合D.全等三角形一定是等邊三角形6.下列計算正確的是()A.(﹣8)﹣8=0 B.3+3=33 C.(﹣3b)2=9b2 D.a6÷a2=a37.如果代數(shù)式有意義,則實數(shù)x的取值范圍是()A.x≥﹣3 B.x≠0 C.x≥﹣3且x≠0 D.x≥38.PM2.5是指大氣中直徑≤0.0000025米的顆粒物,將0.0000025用科學記數(shù)法表示為()A.2.5×10﹣7 B.2.5×10﹣6 C.25×10﹣7 D.0.25×10﹣59.如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半徑為2,圓心角為60°,則圖中陰影部分的面積是()A. B. C. D.10.下列幾何體中,主視圖和俯視圖都為矩形的是(

)A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.已知一次函數(shù)y=ax+b,且2a+b=1,則該一次函數(shù)圖象必經(jīng)過點_____.12.如圖,在△ABC和△EDB中,∠C=∠EBD=90°,點E在AB上.若△ABC≌△EDB,AC=4,BC=3,則AE=_____.13.已知,是關于x的一元二次方程x2+(2m+3)x+m2=0的兩個不相等的實數(shù)根,且滿足=﹣1,則m的值是____.14.如圖,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BC=4,點D是AC邊上一動點,連接BD,以AD為直徑的圓交BD于點E,則線段CE長度的最小值為___.15.如圖,AC、BD為圓O的兩條垂直的直徑,動點P從圓心O出發(fā),沿線段OC-A.B.C.D.16.函數(shù)y=中,自變量x的取值范圍是________.17.小明把一副含45°,30°的直角三角板如圖擺放,其中∠C=∠F=90°,∠A=45°,∠D=30°,則∠α+∠β等于_____.三、解答題(共7小題,滿分69分)18.(10分)在汕頭市中小學標準化建設工程中,某學校計劃購進一批電腦和電子白板,經(jīng)過市場考察得知,電子白板的價格是電腦的3倍,購買5臺電腦和10臺電子白板需要17.5萬元,求每臺電腦、每臺電子白板各多少萬元?19.(5分)我們已經(jīng)知道一些特殊的勾股數(shù),如三連續(xù)正整數(shù)中的勾股數(shù):3、4、5;三個連續(xù)的偶數(shù)中的勾股數(shù)6、8、10;事實上,勾股數(shù)的正整數(shù)倍仍然是勾股數(shù).另外利用一些構成勾股數(shù)的公式也可以寫出許多勾股數(shù),畢達哥拉斯學派提出的公式:a=2n+1,b=2n2+2n,c=2n2+2n+1(n為正整數(shù))是一組勾股數(shù),請證明滿足以上公式的a、b、c的數(shù)是一組勾股數(shù).然而,世界上第一次給出的勾股數(shù)公式,收集在我國古代的著名數(shù)學著作《九章算術》中,書中提到:當a=(m2﹣n2),b=mn,c=(m2+n2)(m、n為正整數(shù),m>n時,a、b、c構成一組勾股數(shù);利用上述結論,解決如下問題:已知某直角三角形的邊長滿足上述勾股數(shù),其中一邊長為37,且n=5,求該直角三角形另兩邊的長.20.(8分)若一個三位數(shù)的十位數(shù)字比個位數(shù)字和百位數(shù)字都大,則稱這個數(shù)為“傘數(shù)”.現(xiàn)從1,2,3,4這四個數(shù)字中任取3個數(shù),組成無重復數(shù)字的三位數(shù).(1)請畫出樹狀圖并寫出所有可能得到的三位數(shù);(2)甲、乙二人玩一個游戲,游戲規(guī)則是:若組成的三位數(shù)是“傘數(shù)”,則甲勝;否則乙勝.你認為這個游戲公平嗎?試說明理由.21.(10分)如圖,在△ABC中,∠BAC=90°,AD⊥BC于點D,BF平分∠ABC交AD于點E,交AC于點F,求證:AE=AF.22.(10分)將如圖所示的牌面數(shù)字分別是1,2,3,4的四張撲克牌背面朝上,洗勻后放在桌面上.從中隨機抽出一張牌,牌面數(shù)字是偶數(shù)的概率是_____;先從中隨機抽出一張牌,將牌面數(shù)字作為十位上的數(shù)字,然后將該牌放回并重新洗勻,再隨機抽取一張,將牌面數(shù)字作為個位上的數(shù)字,請用畫樹狀圖或列表的方法求組成的兩位數(shù)恰好是4的倍數(shù)的概率.23.(12分)在大課間活動中,體育老師隨機抽取了七年級甲、乙兩班部分女學生進行仰臥起坐的測試,并對成績進行統(tǒng)計分析,繪制了頻數(shù)分布表和統(tǒng)計圖,請你根據(jù)圖表中的信息完成下列問題:分組頻數(shù)頻率第一組(0≤x<15)30.15第二組(15≤x<30)6a第三組(30≤x<45)70.35第四組(45≤x<60)b0.20(1)頻數(shù)分布表中a=_____,b=_____,并將統(tǒng)計圖補充完整;如果該校七年級共有女生180人,估計仰臥起坐能夠一分鐘完成30或30次以上的女學生有多少人?已知第一組中只有一個甲班學生,第四組中只有一個乙班學生,老師隨機從這兩個組中各選一名學生談心得體會,則所選兩人正好都是甲班學生的概率是多少?24.(14分)2013年我國多地出現(xiàn)霧霾天氣,某企業(yè)抓住商機準備生產空氣凈化設備,該企業(yè)決定從以下兩個投資方案中選擇一個進行投資生產,方案一:生產甲產品,每件產品成本為a元(a為常數(shù),且40<a<100),每件產品銷售價為120元,每年最多可生產125萬件;方案二:生產乙產品,每件產品成本價為80元,每件產品銷售價為180元,每年可生產120萬件,另外,年銷售x萬件乙產品時需上交0.5x2萬元的特別關稅,在不考慮其它因素的情況下:(1)分別寫出該企業(yè)兩個投資方案的年利潤y1(萬元)、y2(萬元)與相應生產件數(shù)x(萬件)(x為正整數(shù))之間的函數(shù)關系式,并指出自變量的取值范圍;(2)分別求出這兩個投資方案的最大年利潤;(3)如果你是企業(yè)決策者,為了獲得最大收益,你會選擇哪個投資方案?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解題分析】A、剪去陰影部分后,組成無蓋的正方體,故此選項不合題意;B、剪去陰影部分后,無法組成長方體,故此選項不合題意;C、剪去陰影部分后,能組成長方體,故此選項正確;D、剪去陰影部分后,組成無蓋的正方體,故此選項不合題意;故選C.2、C【解題分析】

首先根據(jù)圓周角定理可知∠B=∠C,再根據(jù)直徑所得的圓周角是直角可得∠ADB=90°,然后根據(jù)三角形的內角和定理可得∠DAB+∠B=90°,所以得到∠DAB+∠C=90°,從而得到結果.【題目詳解】解:∵是的直徑,∴∠ADB=90°.∴∠DAB+∠B=90°.∵∠B=∠C,∴∠DAB+∠C=90°.故選C.【題目點撥】本題考查了圓周角定理及其逆定理和三角形的內角和定理,掌握相關知識進行轉化是解題的關鍵.3、A【解題分析】

根據(jù)軸對稱圖形的概念對各選項分析判斷利用排除法求解.【題目詳解】A、是軸對稱圖形,故本選項正確;

B、不是軸對稱圖形,故本選項錯誤;

C、不是軸對稱圖形,故本選項錯誤;

D、不是軸對稱圖形,故本選項錯誤.

故選:A.【題目點撥】本題考查了軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.4、C【解題分析】試題分析:根據(jù)主視圖是從正面看得到的圖形,可得答案.解:從正面看第一層三個小正方形,第二層左邊一個小正方形,右邊一個小正方形.故選C.考點:簡單組合體的三視圖.5、D【解題分析】

根據(jù)全等三角形的性質可知A,B,C命題均正確,故選項均錯誤;D.錯誤,全等三角也可能是直角三角,故選項正確.故選D.【題目點撥】本題考查全等三角形的性質,兩三角形全等,其對應邊和對應角都相等.6、C【解題分析】選項A,原式=-16;選項B,不能夠合并;選項C,原式=9b2;選項D,原式=7、C【解題分析】

根據(jù)二次根式有意義和分式有意義的條件列出不等式,解不等式即可.【題目詳解】由題意得,x+3≥0,x≠0,解得x≥?3且x≠0,故選C.【題目點撥】本題考查分式有意義條件,二次根式有意義的條件,熟練掌握相關知識是解題的關鍵.8、B【解題分析】

絕對值小于1的正數(shù)也可以利用科學記數(shù)法表示,一般形式為a×10﹣n,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【題目詳解】解:0.0000025=2.5×10﹣6;故選B.【題目點撥】本題考查了用科學記數(shù)法表示較小的數(shù),一般形式為a×10﹣n,其中1≤|a|<10,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.9、B【解題分析】

根據(jù)菱形的性質得出△DAB是等邊三角形,進而利用全等三角形的判定得出△ABG≌△DBH,得出四邊形GBHD的面積等于△ABD的面積,進而求出即可.【題目詳解】連接BD,∵四邊形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等邊三角形,∵AB=2,∴△ABD的高為,∵扇形BEF的半徑為2,圓心角為60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,設AD、BE相交于點G,設BF、DC相交于點H,在△ABG和△DBH中,,∴△ABG≌△DBH(ASA),∴四邊形GBHD的面積等于△ABD的面積,∴圖中陰影部分的面積是:S扇形EBF-S△ABD==.故選B.10、B【解題分析】A、主視圖為等腰三角形,俯視圖為圓以及圓心,故A選項錯誤;B、主視圖為矩形,俯視圖為矩形,故B選項正確;C、主視圖,俯視圖均為圓,故C選項錯誤;D、主視圖為矩形,俯視圖為三角形,故D選項錯誤.故選:B.二、填空題(共7小題,每小題3分,滿分21分)11、(2,1)【解題分析】∵一次函數(shù)y=ax+b,∴當x=2,y=2a+b,又2a+b=1,∴當x=2,y=1,即該圖象一定經(jīng)過點(2,1).故答案為(2,1).12、1【解題分析】試題分析:在Rt△ACB中,∠C=90°,AC=4,BC=3,由勾股定理得:AB=5,∵△ABC≌△EDB,∴BE=AC=4,∴AE=5﹣4=1.考點:全等三角形的性質;勾股定理13、3.【解題分析】

可以先由韋達定理得出兩個關于、的式子,題目中的式子變形即可得出相應的與韋達定理相關的式子,即可求解.【題目詳解】得+=-2m-3,=m2,又因為,所以m2-2m-3=0,得m=3或m=-1,因為一元二次方程的兩個不相等的實數(shù)根,所以△>0,得(2m+3)2-4×m2=12m+9>0,所以m>,所以m=-1舍去,綜上m=3.【題目點撥】本題考查了根與系數(shù)的關系,將根與系數(shù)的關系與代數(shù)式相結合解題是解決本題的關鍵.14、﹣2【解題分析】

連結AE,如圖1,先根據(jù)等腰直角三角形的性質得到AB=AC=4,再根據(jù)圓周角定理,由AD為直徑得到∠AED=90°,接著由∠AEB=90°得到點E在以AB為直徑的O上,于是當點O、E、C共線時,CE最小,如圖2,在Rt△AOC中利用勾股定理計算出OC=2,從而得到CE的最小值為2﹣2.【題目詳解】連結AE,如圖1,∵∠BAC=90°,AB=AC,BC=,∴AB=AC=4,∵AD為直徑,∴∠AED=90°,∴∠AEB=90°,∴點E在以AB為直徑的O上,∵O的半徑為2,∴當點O、E.C共線時,CE最小,如圖2在Rt△AOC中,∵OA=2,AC=4,∴OC=,∴CE=OC?OE=2﹣2,即線段CE長度的最小值為2﹣2.故答案為:2﹣2.【題目點撥】此題考查等腰直角三角形的性質,圓周角定理,勾股定理,解題關鍵在于結合實際運用圓的相關性質.15、C.【解題分析】分析:根據(jù)動點P在OC上運動時,∠APB逐漸減小,當P在上運動時,∠APB不變,當P在DO上運動時,∠APB逐漸增大,即可得出答案.解答:解:當動點P在OC上運動時,∠APB逐漸減??;當P在上運動時,∠APB不變;當P在DO上運動時,∠APB逐漸增大.故選C.16、x≤1【解題分析】分析:根據(jù)二次根式有意義的條件解答即可.詳解:∵二次根式有意義,被開方數(shù)為非負數(shù),∴1-x≥0,解得x≤1.故答案為x≤1.點睛:本題考查了二次根式有意義的條件,熟知二次根式有意義,被開方數(shù)為非負數(shù)是解題的關鍵.17、210°【解題分析】

根據(jù)三角形內角和定理得到∠B=45°,∠E=60°,根據(jù)三角形的外角的性質計算即可.【題目詳解】解:如圖:∵∠C=∠F=90°,∠A=45°,∠D=30°,∴∠B=45°,∠E=60°,∴∠2+∠3=120°,∴∠α+∠β=∠A+∠1+∠4+∠B=∠A+∠B+∠2+∠3=90°+120°=210°,故答案為:210°.【題目點撥】本題考查的是三角形的外角的性質、三角形內角和定理,掌握三角形的一個外角等于和它不相鄰的兩個內角的和是解題的關鍵.三、解答題(共7小題,滿分69分)18、每臺電腦0.5萬元;每臺電子白板1.5萬元.【解題分析】

先設每臺電腦x萬元,每臺電子白板y萬元,根據(jù)電子白板的價格是電腦的3倍,購買5臺電腦和10臺電子白板需要17.5萬元列出方程組,求出x,y的值即可.【題目詳解】設每臺電腦x萬元,每臺電子白板y萬元.根據(jù)題意,得:解得,答:每臺電腦0.5萬元,每臺電子白板1.5萬元.【題目點撥】本題考查了二元一次方程組的應用,解題的關鍵是讀懂題意,找出之間的數(shù)量關系,列出二元一次方程組.19、(1)證明見解析;(2)當n=5時,一邊長為37的直角三角形另兩邊的長分別為12,1.【解題分析】

(1)根據(jù)題意只需要證明a2+b2=c2,即可解答(2)根據(jù)題意將n=5代入得到a=(m2﹣52),b=5m,c=(m2+25),再將直角三角形的一邊長為37,分別分三種情況代入a=(m2﹣52),b=5m,c=(m2+25),即可解答【題目詳解】(1)∵a2+b2=(2n+1)2+(2n2+2n)2=4n2+4n+1+4n4+8n3+4n2=4n4+8n3+8n2+4n+1,c2=(2n2+2n+1)2=4n4+8n3+8n2+4n+1,∴a2+b2=c2,∵n為正整數(shù),∴a、b、c是一組勾股數(shù);(2)解:∵n=5∴a=(m2﹣52),b=5m,c=(m2+25),∵直角三角形的一邊長為37,∴分三種情況討論,①當a=37時,(m2﹣52)=37,解得m=±3(不合題意,舍去)②當y=37時,5m=37,解得m=(不合題意舍去);③當z=37時,37=(m2+n2),解得m=±7,∵m>n>0,m、n是互質的奇數(shù),∴m=7,把m=7代入①②得,x=12,y=1.綜上所述:當n=5時,一邊長為37的直角三角形另兩邊的長分別為12,1.【題目點撥】此題考查了勾股數(shù)和勾股定理,熟練掌握勾股定理是解題關鍵20、(1)見解析(2)不公平。理由見解析【解題分析】解:(1)畫樹狀圖得:所有得到的三位數(shù)有24個,分別為:123,124,132,134,142,143,213,214,231,234,241,243,312,314,321,324,341,342,412,,413,421,423,431,432。(2)這個游戲不公平。理由如下:∵組成的三位數(shù)中是“傘數(shù)”的有:132,142,143,231,241,243,341,342,共有8個,∴甲勝的概率為824=1∵甲勝的概率≠乙勝的概率,∴這個游戲不公平。(1)首先根據(jù)題意畫出樹狀圖,由樹狀圖即可求得所有可能得到的三位數(shù)。(2)由(1),可求得甲勝和乙勝的概率,比較是否相等即可得到答案。21、見解析【解題分析】

根據(jù)角平分線的定義可得∠ABF=∠CBF,由已知條件可得∠ABF+∠AFB=∠CBF+∠BED=90°,根據(jù)余角的性質可得∠AFB=∠BED,即可求得∠AFE=∠AEF,由等腰三角形的判定即可證得結論.【題目詳解】∵BF平分∠ABC,∴∠ABF=∠CBF,∵∠BAC=90°,AD⊥BC,∴∠ABF+∠AFB=∠CBF+∠BED=90°,∴∠AFB=∠BED,∵∠AEF=∠BED,∴∠AFE=∠AEF,∴AE=AF.【題目點撥】本題考查了等腰三角形的判定、直角三角形的性質,根據(jù)余角的性質證得∠AFB=∠BED是解題的關鍵.22、(1)12;(2)1【解題分析】

(1)直接利用概率公式求解即可;(2)依據(jù)題意先用列表法或畫樹狀圖法分析所有等可能的出現(xiàn)結果,然后根據(jù)概率公式求出該事件的概率即可.【題目詳解】(1)從中隨機抽出一張牌,牌面所有可能出現(xiàn)的結果有4種,且它們出現(xiàn)的可能性相等,其中出現(xiàn)偶數(shù)的情況有2種,∴P(牌面是偶數(shù))=24=1故答案為:12(2)根據(jù)題意,畫樹狀圖:可知,共有16種等可能的結果,其中恰好是4的倍數(shù)的共有4種,∴【題目點撥】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.23、0.34【解題分析】

(1)由統(tǒng)計圖易得a與b的值,繼而將統(tǒng)計圖補充完整;(2)利用用樣本估計總體的知識求解即可求得答案;(3)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與所選兩人正好都是甲班學生的情況,再利用概率公式即可求得答案.【題目詳解】(1)a=1﹣0.15﹣0.35﹣0.20=0.3;

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論