2024屆上海市閔行區(qū)24校中考試題猜想數(shù)學試卷含解析_第1頁
2024屆上海市閔行區(qū)24校中考試題猜想數(shù)學試卷含解析_第2頁
2024屆上海市閔行區(qū)24校中考試題猜想數(shù)學試卷含解析_第3頁
2024屆上海市閔行區(qū)24校中考試題猜想數(shù)學試卷含解析_第4頁
2024屆上海市閔行區(qū)24校中考試題猜想數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆上海市閔行區(qū)24校中考試題猜想數(shù)學試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.某市從今年1月1日起調整居民用水價格,每立方米水費上漲.小麗家去年12月份的水費是15元,而今年5月的水費則是10元.已知小麗家今年5月的用水量比去年12月的用水量多5m1.求該市今年居民用水的價格.設去年居民用水價格為x元/m1,根據(jù)題意列方程,正確的是()A. B.C. D.2.如圖,G,E分別是正方形ABCD的邊AB,BC上的點,且AG=CE,AE⊥EF,AE=EF,現(xiàn)有如下結論:①BE=DH;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH.其中,正確的結論有()A.4個 B.3個 C.2個 D.1個3.剪紙是我國傳統(tǒng)的民間藝術,下列剪紙作品中既不是軸對稱圖形,也不是中心對稱圖形的是()A. B. C. D.4.已知點,與點關于軸對稱的點的坐標是()A. B. C. D.5.若點M(﹣3,y1),N(﹣4,y2)都在正比例函數(shù)y=﹣k2x(k≠0)的圖象上,則y1與y2的大小關系是()A.y1<y2B.y1>y2C.y1=y2D.不能確定6.在下列實數(shù)中,﹣3,,0,2,﹣1中,絕對值最小的數(shù)是()A.﹣3 B.0 C. D.﹣17.若關于x的方程=3的解為正數(shù),則m的取值范圍是()A.m< B.m<且m≠C.m>﹣ D.m>﹣且m≠﹣8.觀察下列圖案,是軸對稱而不是中心對稱的是()A. B. C. D.9.根據(jù)文化和旅游部發(fā)布的《“五一”假日旅游指南》,今年“五一”期間居民出游意愿達36.6%,預計“五一”期間全固有望接待國內游客1.49億人次,實現(xiàn)國內旅游收入880億元.將880億用科學記數(shù)法表示應為()A.8×107 B.880×108 C.8.8×109 D.8.8×101010.如圖,在四邊形ABCD中,如果∠ADC=∠BAC,那么下列條件中不能判定△ADC和△BAC相似的是()A.∠DAC=∠ABC B.AC是∠BCD的平分線 C.AC2=BC?CD D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,已知等腰直角三角形ABC的直角邊長為1,以Rt△ABC的斜邊AC為直角邊,畫第二個等腰直角三角形ACD,再以Rt△ACD的斜邊AD為直角邊,畫第三個等腰直角三角形ADE……依此類推,直到第五個等腰直角三角形AFG,則由這五個等腰直角三角形所構成的圖形的面積為__________.12.北京奧運會國家體育場“鳥巢”的建筑面積為258000平方米,那么258000用科學記數(shù)法可表示為.13.如圖,點A、B、C在圓O上,弦AC與半徑OB互相平分,那么∠AOC度數(shù)為_____度.14.函數(shù)y=115.若關于x的方程有兩個相等的實數(shù)根,則m的值是_________.16.分解因式:x2y﹣xy2=_____.17.如圖,菱形ABCD和菱形CEFG中,∠ABC=60°,點B,C,E在同一條直線上,點D在CG上,BC=1,CE=3,H是AF的中點,則CH的長為________.三、解答題(共7小題,滿分69分)18.(10分)某班為了解學生一學期做義工的時間情況,對全班50名學生進行調查,按做義工的時間(單位:小時),將學生分成五類:類(),類(),類(),類(),類(),繪制成尚不完整的條形統(tǒng)計圖如圖11.根據(jù)以上信息,解答下列問題:類學生有人,補全條形統(tǒng)計圖;類學生人數(shù)占被調查總人數(shù)的%;從該班做義工時間在的學生中任選2人,求這2人做義工時間都在中的概率.19.(5分)如圖,已知四邊形ABCD是矩形,把矩形沿直線AC折疊,點B落在點E處,連接DE.若DE:AC=3:5,求的值.20.(8分)如圖所示,正方形網格中,△ABC為格點三角形(即三角形的頂點都在格點上).把△ABC沿BA方向平移后,點A移到點A1,在網格中畫出平移后得到的△A1B1C1;把△A1B1C1繞點A1按逆時針方向旋轉90°,在網格中畫出旋轉后的△A1B2C2;如果網格中小正方形的邊長為1,求點B經過(1)、(2)變換的路徑總長.21.(10分)今年3月12日植樹節(jié)期間,學校預購進A、B兩種樹苗,若購進A種樹苗3棵,B種樹苗5棵,需2100元,若購進A種樹苗4棵,B種樹苗10棵,需3800元.(1)求購進A、B兩種樹苗的單價;(2)若該單位準備用不多于8000元的錢購進這兩種樹苗共30棵,求A種樹苗至少需購進多少棵?22.(10分)如圖,一次函數(shù)的圖象與反比例函數(shù)(為常數(shù),且)的圖象交于A(1,a)、B兩點.求反比例函數(shù)的表達式及點B的坐標;在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標及△PAB的面積.23.(12分)如圖,在一個可以自由轉動的轉盤中,指針位置固定,三個扇形的面積都相等,且分別標有數(shù)字2,3、1.(1)小明轉動轉盤一次,當轉盤停止轉動時,指針所指扇形中的數(shù)字是奇數(shù)的概率為;(2)小明先轉動轉盤一次,當轉盤停止轉動時,記錄下指針所指扇形中的數(shù)字;接著再轉動轉盤一次,當轉盤停止轉動時,再次記錄下指針所指扇形中的數(shù)字,求這兩個數(shù)字之和是3的倍數(shù)的概率(用畫樹狀圖或列表等方法求解).24.(14分)如圖,在四邊形中,為的中點,于點,,,,求的度數(shù).

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解題分析】解:設去年居民用水價格為x元/cm1,根據(jù)題意列方程:,故選A.2、C【解題分析】

由∠BEG=45°知∠BEA>45°,結合∠AEF=90°得∠HEC<45°,據(jù)此知HC<EC,即可判斷①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根據(jù)SAS推出△GAE≌△CEF,即可判斷②;求出∠AGE=∠ECF=135°,即可判斷③;求出∠FEC<45°,根據(jù)相似三角形的判定得出△GBE和△ECH不相似,即可判斷④.【題目詳解】解:∵四邊形ABCD是正方形,∴AB=BC=CD,∵AG=GE,∴BG=BE,∴∠BEG=45°,∴∠BEA>45°,∵∠AEF=90°,∴∠HEC<45°,∴HC<EC,∴CD﹣CH>BC﹣CE,即DH>BE,故①錯誤;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中,∵AG=CE,∠GAE=∠CEF,AE=EF,∴△GAE≌△CEF(SAS)),∴②正確;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正確;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④錯誤;故選:C.【題目點撥】本題考查了正方形的性質,等腰三角形的性質,全等三角形的性質和判定,相似三角形的判定,勾股定理等知識點的綜合運用,綜合比較強,難度較大.3、C【解題分析】【分析】根據(jù)軸對稱圖形和中心對稱圖形的概念對各選項分析判斷即可得解.【題目詳解】A、不是中心對稱圖形,是軸對稱圖形,故本選項錯誤;B、不是中心對稱圖形,是軸對稱圖形,故本選項錯誤;C、既不是中心對稱圖形,也不是軸對稱圖形,故本選項正確;D、是中心對稱圖形,不是軸對稱圖形,故本選項錯誤,故選C.【題目點撥】本題主要考查軸對稱圖形和中心對稱圖形,在平面內,如果一個圖形沿一條直線折疊,直線兩旁的部分能夠完全重合,這樣的圖形叫做軸對稱圖形;在平面內,如果把一個圖形繞某個點旋轉180°后,能與原圖形重合,那么就說這個圖形是中心對稱圖形.4、C【解題分析】

根據(jù)關于y軸對稱的點,縱坐標相同,橫坐標互為相反數(shù),可得答案.【題目詳解】解:點,與點關于軸對稱的點的坐標是,

故選:C.【題目點撥】本題考查了關于y軸對稱的點的坐標,解決本題的關鍵是掌握好對稱點的坐標規(guī)律:關于x軸對稱的點,橫坐標相同,縱坐標互為相反數(shù);關于y軸對稱的點,縱坐標相同,橫坐標互為相反數(shù);關于原點對稱的點,橫坐標與縱坐標都互為相反數(shù).5、A【解題分析】

根據(jù)正比例函數(shù)的增減性解答即可.【題目詳解】∵正比例函數(shù)y=﹣k2x(k≠0),﹣k2<0,∴該函數(shù)的圖象中y隨x的增大而減小,∵點M(﹣3,y1),N(﹣4,y2)在正比例函數(shù)y=﹣k2x(k≠0)圖象上,﹣4<﹣3,∴y2>y1,故選:A.【題目點撥】本題考查了正比例函數(shù)圖象與系數(shù)的關系:對于y=kx(k為常數(shù),k≠0),當k>0時,y=kx的圖象經過一、三象限,y隨x的增大而增大;當k<0時,y=kx的圖象經過二、四象限,y隨x的增大而減小.6、B【解題分析】|﹣3|=3,||=,|0|=0,|2|=2,|﹣1|=1,∵3>2>>1>0,∴絕對值最小的數(shù)是0,故選:B.7、B【解題分析】

解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=,已知關于x的方程=3的解為正數(shù),所以﹣2m+9>0,解得m<,當x=3時,x==3,解得:m=,所以m的取值范圍是:m<且m≠.故答案選B.8、A【解題分析】試題解析:試題解析:根據(jù)軸對稱圖形和中心對稱圖形的概念進行判斷可得:A、是軸對稱圖形,不是中心對稱圖形,故本選項符合題意;B、不是軸對稱圖形,是中心對稱圖形,故本選項不符合題意;C、不是軸對稱圖形,是中心對稱圖形,故本選項不符合題意;D、是軸對稱圖形,也是中心對稱圖形,故本選項不符合題意.故選A.點睛:在同一平面內,如果把一個圖形繞某一點旋轉,旋轉后的圖形能和原圖形完全重合,那么這個圖形就叫做中心對稱圖形.這個旋轉點,就叫做對稱中心.9、D【解題分析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>10時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【題目詳解】880億=88000000000=8.8×1010,

故選D.【題目點撥】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.10、C【解題分析】

結合圖形,逐項進行分析即可.【題目詳解】在△ADC和△BAC中,∠ADC=∠BAC,如果△ADC∽△BAC,需滿足的條件有:①∠DAC=∠ABC或AC是∠BCD的平分線;②,故選C.【題目點撥】本題考查了相似三角形的條件,熟練掌握相似三角形的判定方法是解題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、12.2【解題分析】

∵△ABC是邊長為1的等腰直角三角形,∴S△ABC=×1×1==11-1;AC==,AD==1,∴S△ACD==1=11-1∴第n個等腰直角三角形的面積是1n-1.∴S△AEF=14-1=4,S△AFG=12-1=8,由這五個等腰直角三角形所構成的圖形的面積為+1+1+4+8=12.2.故答案為12.2.12、2.58×1【解題分析】科學記數(shù)法就是將一個數(shù)字表示成(a×10的n次冪的形式),其中1≤|a|<10,n表示整數(shù).即從左邊第一位開始,在首位非零的后面加上小數(shù)點,再乘以10的n次冪.258000=2.58×1.13、1.【解題分析】

首先根據(jù)垂徑定理得到OA=AB,結合等邊三角形的性質即可求出∠AOC的度數(shù).【題目詳解】解:∵弦AC與半徑OB互相平分,∴OA=AB,∵OA=OC,∴△OAB是等邊三角形,∴∠AOB=60°,∴∠AOC=1°,故答案為1.【題目點撥】本題主要考查了垂徑定理的知識,解題的關鍵是證明△OAB是等邊三角形,此題難度不大.14、x>1【解題分析】試題分析:二次根號下的數(shù)為非負數(shù),二次根式才有意義,故需要滿足x-1?0?x?1考點:二次根式、分式有意義的條件點評:解答本題的關鍵是熟練掌握二次根號下的數(shù)為非負數(shù),二次根式才有意義;分式的分母不能為0,分式才有意義.15、m=-【解題分析】

根據(jù)題意可以得到△=0,從而可以求得m的值.【題目詳解】∵關于x的方程有兩個相等的實數(shù)根,∴△=,解得:.故答案為.16、xy(x﹣y)【解題分析】原式=xy(x﹣y).故答案為xy(x﹣y).17、【解題分析】

連接AC、CF,GE,根據(jù)菱形性質求出AC、CF,再求出∠ACF=90°,然后利用勾股定理列式求出AF,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半解答即可.【題目詳解】解:如圖,連接AC、CF、GE,CF和GE相交于O點∵在菱形ABCD中,,BC=1,∴,AC=1,∴∵在菱形CEFG中,是它的對角線,∴,∴,∴∵==,∴在,又∵H是AF的中點∴.【題目點撥】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質,菱形的性質,勾股定理,熟記各性質并作輔助線構造出直角三角形是解題的關鍵.三、解答題(共7小題,滿分69分)18、(1)5;(2)36%;(3).【解題分析】試題分析:(1)根據(jù):數(shù)據(jù)總數(shù)-已知的小組頻數(shù)=所求的小組頻數(shù),進行求解,然后根據(jù)所求數(shù)據(jù)補全條形圖即可;(2)根據(jù):小組頻數(shù)=,進行求解即可;(3)利用列舉法求概率即可.試題解析:(1)E類:50-2-3-22-18=5(人),故答案為:5;補圖如下:(2)D類:1850×100%=36%,故答案為:36%;(3)設這5人為有以下10種情況:其中,兩人都在的概率是:.19、【解題分析】

根據(jù)翻折的性質可得∠BAC=∠EAC,再根據(jù)矩形的對邊平行可得AB∥CD,根據(jù)兩直線平行,內錯角相等可得∠DCA=∠BAC,從而得到∠EAC=∠DCA,設AE與CD相交于F,根據(jù)等角對等邊的性質可得AF=CF,再求出DF=EF,從而得到△ACF和△EDF相似,根據(jù)相似三角形得出對應邊成比,設DF=3x,F(xiàn)C=5x,在Rt△ADF中,利用勾股定理列式求出AD,再根據(jù)矩形的對邊相等求出AB,然后代入進行計算即可得解.【題目詳解】解:∵矩形沿直線AC折疊,點B落在點E處,∴CE=BC,∠BAC=∠CAE,∵矩形對邊AD=BC,∴AD=CE,設AE、CD相交于點F,在△ADF和△CEF中,,∴△ADF≌△CEF(AAS),∴EF=DF,∵AB∥CD,∴∠BAC=∠ACF,又∵∠BAC=∠CAE,∴∠ACF=∠CAE,∴AF=CF,∴AC∥DE,∴△ACF∽△DEF,∴,設EF=3k,CF=5k,由勾股定理得CE=,∴AD=BC=CE=4k,又∵CD=DF+CF=3k+5k=8k,∴AB=CD=8k,∴AD:AB=(4k):(8k)=.【題目點撥】本題考查了翻折變換的性質,全等三角形的判定與性質,相似三角形的判定與性質,勾股定理,綜合題難度較大,求出△ACF和△DEF相似是解題的關鍵,也是本題的難點.20、(1)(2)作圖見解析;(3).【解題分析】

(1)利用平移的性質畫圖,即對應點都移動相同的距離.(2)利用旋轉的性質畫圖,對應點都旋轉相同的角度.(3)利用勾股定理和弧長公式求點B經過(1)、(2)變換的路徑總長.【題目詳解】解:(1)如答圖,連接AA1,然后從C點作AA1的平行線且A1C1=AC,同理找到點B1,分別連接三點,△A1B1C1即為所求.(2)如答圖,分別將A1B1,A1C1繞點A1按逆時針方向旋轉90°,得到B2,C2,連接B2C2,△A1B2C2即為所求.(3)∵,∴點B所走的路徑總長=.考點:1.網格問題;2.作圖(平移和旋轉變換);3.勾股定理;4.弧長的計算.21、(1)購進A種樹苗的單價為200元/棵,購進B種樹苗的單價為300元/棵(2)A種樹苗至少需購進1棵【解題分析】

(1)設購進A種樹苗的單價為x元/棵,購進B種樹苗的單價為y元/棵,根據(jù)“若購進A種樹苗3棵,B種樹苗5棵,需210元,若購進A種樹苗4棵,B種樹苗1棵,需3800元”,即可得出關于x、y的二元一次方程組,解之即可得出結論;

(2)設需購進A種樹苗a棵,則購進B種樹苗(30-a)棵,根據(jù)總價=單價×購買數(shù)量結合購買兩種樹苗的總費用不多于8000元,即可得出關于a的一元一次不等式,解之取其中的最小值即可得出結論.【題目詳解】設購進A種樹苗的單價為x元/棵,購進B種樹苗的單價為y元/棵,根據(jù)題意得:3x+5y=21004x+10y=3800解得:x=200y=300答:購進A種樹苗的單價為200元/棵,購進B種樹苗的單價為300元/棵.(2)設需購進A種樹苗a棵,則購進B種樹苗(30﹣a)棵,根據(jù)題意得:200a+300(30﹣a)≤8000,解得:a≥1.∴A種樹苗至少需購進1棵.【題目點撥】本題考查了一元一次不等式的應用以及二元一次方程組的應用,解題的關鍵是:(1)找準等量關系,正確列出二元一次方程組;(2)根據(jù)數(shù)量間的關系,正確列出一元一次不等式.22、(1),;(2)P,.【解題分析】試題分析:(1)由點A在一次函數(shù)圖象上,結合一次函數(shù)解析式可求出點A的坐標,再由點A的坐標利用待定系數(shù)法即可求出反比例函數(shù)解析式,聯(lián)立兩函數(shù)解析式成方程組,解方程組即可求出點B坐標;(2)作點B作關于x軸的對稱點D,交x軸于點C,連接AD,交x軸于點P,連接PB.由點B、D的對稱性結合點B的坐標找出點D的坐標,設直線AD的解析式為y=mx+n,結合點A、D的坐標利用待定系數(shù)法求出直線AD的解析式,令直線AD的解析式中y=0求出點P的坐標,再通過分割圖形結合三角形的面積公式即可得出結論.試題解析:(1)把點A(1,a)代入一次函數(shù)y=-x+4,得:a=-1+4,解得:a=3,∴點A的坐標為(1,3).把點A(1,3)代入反比例函數(shù)y=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論