甘肅省蘭州市七里河區(qū)2024屆中考押題數(shù)學(xué)預(yù)測(cè)卷含解析_第1頁
甘肅省蘭州市七里河區(qū)2024屆中考押題數(shù)學(xué)預(yù)測(cè)卷含解析_第2頁
甘肅省蘭州市七里河區(qū)2024屆中考押題數(shù)學(xué)預(yù)測(cè)卷含解析_第3頁
甘肅省蘭州市七里河區(qū)2024屆中考押題數(shù)學(xué)預(yù)測(cè)卷含解析_第4頁
甘肅省蘭州市七里河區(qū)2024屆中考押題數(shù)學(xué)預(yù)測(cè)卷含解析_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

甘肅省蘭州市七里河區(qū)2024屆中考押題數(shù)學(xué)預(yù)測(cè)卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.下列四個(gè)數(shù)表示在數(shù)軸上,它們對(duì)應(yīng)的點(diǎn)中,離原點(diǎn)最遠(yuǎn)的是()A.﹣2 B.﹣1 C.0 D.12.隨著生活水平的提高,小林家購置了私家車,這樣他乘坐私家車上學(xué)比乘坐公交車上學(xué)所需的時(shí)間少用了15分鐘,現(xiàn)已知小林家距學(xué)校8千米,乘私家車平均速度是乘公交車平均速度的2.5倍,若設(shè)乘公交車平均每小時(shí)走x千米,根據(jù)題意可列方程為()A. B. C. D.3.某校體育節(jié)有13名同學(xué)參加女子百米賽跑,它們預(yù)賽的成績各不相同,取前6名參加決賽.小穎已經(jīng)知道了自己的成績,她想知道自己能否進(jìn)入決賽,還需要知道這13名同學(xué)成績的()A.方差B.極差C.中位數(shù)D.平均數(shù)4.下列計(jì)算正確的是()A.(a)=a B.a(chǎn)+a=aC.(3a)?(2a)=6a D.3a﹣a=35.如果菱形的一邊長是8,那么它的周長是()A.16 B.32 C.163 D.3236.正比例函數(shù)y=2kx的圖象如圖所示,則y=(k-2)x+1-k的圖象大致是()A.B.C.D.7.在△ABC中,∠C=90°,AC=9,sinB=,則AB=(

)A.15

B.12

C.9

D.68.如圖,數(shù)軸上有A,B,C,D四個(gè)點(diǎn),其中絕對(duì)值最小的數(shù)對(duì)應(yīng)的點(diǎn)是()A.點(diǎn)A B.點(diǎn)B C.點(diǎn)C D.點(diǎn)D9.如圖,在Rt△ABC中,BC=2,∠BAC=30°,斜邊AB的兩個(gè)端點(diǎn)分別在相互垂直的射線OM,ON上滑動(dòng),下列結(jié)論:①若C,O兩點(diǎn)關(guān)于AB對(duì)稱,則OA=;②C,O兩點(diǎn)距離的最大值為4;③若AB平分CO,則AB⊥CO;④斜邊AB的中點(diǎn)D運(yùn)動(dòng)路徑的長為π.其中正確的是()A.①② B.①②③ C.①③④ D.①②④10.如圖,是的直徑,是的弦,連接,,,則與的數(shù)量關(guān)系為()A. B.C. D.11.已知M,N,P,Q四點(diǎn)的位置如圖所示,下列結(jié)論中,正確的是()A.∠NOQ=42° B.∠NOP=132°C.∠PON比∠MOQ大 D.∠MOQ與∠MOP互補(bǔ)12.如圖,在矩形ABCD中,AD=AB,∠BAD的平分線交BC于點(diǎn)E,DH⊥AE于點(diǎn)H,連接BH并延長交CD于點(diǎn)F,連接DE交BF于點(diǎn)O,下列結(jié)論:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正確的有()A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.的算術(shù)平方根為______.14.計(jì)算×3結(jié)果等于_____.15.如圖,在ABCD中,AB=8,P、Q為對(duì)角線AC的三等分點(diǎn),延長DP交AB于點(diǎn)M,延長MQ交CD于點(diǎn)N,則CN=__________.16.在△ABC中,∠C=90°,AC=3,BC=4,點(diǎn)D,E,F分別是邊AB,AC,BC的中點(diǎn),則17.已知二次函數(shù)y=x2,當(dāng)x>0時(shí),y隨x的增大而_____(填“增大”或“減小”).18.如圖,已知⊙O是△ABD的外接圓,AB是⊙O的直徑,CD是⊙O的弦,∠ABD=58°,則∠BCD的度數(shù)是_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)已知拋物線y=a(x+3)(x﹣1)(a≠0),與x軸從左至右依次相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,經(jīng)過點(diǎn)A的直線y=﹣3x+b與拋物線的另一個(gè)交點(diǎn)為D.(1)若點(diǎn)D的橫坐標(biāo)為2,求拋物線的函數(shù)解析式;(2)若在第三象限內(nèi)的拋物線上有點(diǎn)P,使得以A、B、P為頂點(diǎn)的三角形與△ABC相似,求點(diǎn)P的坐標(biāo);(3)在(1)的條件下,設(shè)點(diǎn)E是線段AD上的一點(diǎn)(不含端點(diǎn)),連接BE.一動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿線段BE以每秒1個(gè)單位的速度運(yùn)動(dòng)到點(diǎn)E,再沿線段ED以每秒2320.(6分)商場(chǎng)某種商品平均每天可銷售30件,每件盈利50元,為了盡快減少庫存,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施.經(jīng)調(diào)査發(fā)現(xiàn),每件商品每降價(jià)1元,商場(chǎng)平均每天可多售出2件.若某天該商品每件降價(jià)3元,當(dāng)天可獲利多少元?設(shè)每件商品降價(jià)x元,則商場(chǎng)日銷售量增加____件,每件商品,盈利______元(用含x的代數(shù)式表示);在上述銷售正常情況下,每件商品降價(jià)多少元時(shí),商場(chǎng)日盈利可達(dá)到2000元?21.(6分)2018年10月23日,港珠澳大橋正式開通,成為橫亙?cè)诹尕暄笊系囊坏漓n麗的風(fēng)景線.大橋主體工程隧道的東、西兩端各設(shè)置了一個(gè)海中人工島,來銜接橋梁和海地隧道,西人工島上的點(diǎn)和東人工島上的點(diǎn)間的距離約為5.6千米,點(diǎn)是與西人工島相連的大橋上的一點(diǎn),,,在一條直線上.如圖,一艘觀光船沿與大橋段垂直的方向航行,到達(dá)點(diǎn)時(shí)觀測(cè)兩個(gè)人工島,分別測(cè)得,與觀光船航向的夾角,,求此時(shí)觀光船到大橋段的距離的長(參考數(shù)據(jù):,,,,,).22.(8分)在“一帶一路”戰(zhàn)略的影響下,某茶葉經(jīng)銷商準(zhǔn)備把“茶路”融入“絲路”,經(jīng)計(jì)算,他銷售10kgA級(jí)別和20kgB級(jí)別茶葉的利潤為4000元,銷售20kgA級(jí)別和10kgB級(jí)別茶葉的利潤為3500元.(1)求每千克A級(jí)別茶葉和B級(jí)別茶葉的銷售利潤;(2)若該經(jīng)銷商一次購進(jìn)兩種級(jí)別的茶葉共200kg用于出口,其中B級(jí)別茶葉的進(jìn)貨量不超過A級(jí)別茶葉的2倍,請(qǐng)你幫該經(jīng)銷商設(shè)計(jì)一種進(jìn)貨方案使銷售總利潤最大,并求出總利潤的最大值.23.(8分)如圖,某高速公路建設(shè)中需要確定隧道AB的長度.已知在離地面1500m高度C處的飛機(jī)上,測(cè)量人員測(cè)得正前方A、B兩點(diǎn)處的俯角分別為60°和45°.求隧道AB的長(≈1.73).24.(10分)某商人制成了一個(gè)如圖所示的轉(zhuǎn)盤,取名為“開心大轉(zhuǎn)盤”,游戲規(guī)定:參與者自由轉(zhuǎn)動(dòng)轉(zhuǎn)盤,轉(zhuǎn)盤停止后,若指針指向字母“A”,則收費(fèi)2元,若指針指向字母“B”,則獎(jiǎng)勵(lì)3元;若指針指向字母“C”,則獎(jiǎng)勵(lì)1元.一天,前來尋開心的人轉(zhuǎn)動(dòng)轉(zhuǎn)盤80次,你認(rèn)為該商人是盈利的可能性大還是虧損的可能性大?為什么?25.(10分)在一節(jié)數(shù)學(xué)活動(dòng)課上,王老師將本班學(xué)生身高數(shù)據(jù)(精確到1厘米)出示給大家,要求同學(xué)們各自獨(dú)立繪制一幅頻數(shù)分布直方圖,甲繪制的如圖①所示,乙繪制的如圖②所示,經(jīng)王老師批改,甲繪制的圖是正確的,乙在數(shù)據(jù)整理與繪圖過程中均有個(gè)別錯(cuò)誤.寫出乙同學(xué)在數(shù)據(jù)整理或繪圖過程中的錯(cuò)誤(寫出一個(gè)即可);甲同學(xué)在數(shù)據(jù)整理后若用扇形統(tǒng)計(jì)圖表示,則159.5﹣164.5這一部分所對(duì)應(yīng)的扇形圓心角的度數(shù)為;該班學(xué)生的身高數(shù)據(jù)的中位數(shù)是;假設(shè)身高在169.5﹣174.5范圍的5名同學(xué)中,有2名女同學(xué),班主任老師想在這5名同學(xué)中選出2名同學(xué)作為本班的正、副旗手,那么恰好選中一名男同學(xué)和一名女同學(xué)當(dāng)正,副旗手的概率是多少?26.(12分)已知邊長為2a的正方形ABCD,對(duì)角線AC、BD交于點(diǎn)Q,對(duì)于平面內(nèi)的點(diǎn)P與正方形ABCD,給出如下定義:如果,則稱點(diǎn)P為正方形ABCD的“關(guān)聯(lián)點(diǎn)”.在平面直角坐標(biāo)系xOy中,若A(﹣1,1),B(﹣1,﹣1),C(1,﹣1),D(1,1).(1)在,,中,正方形ABCD的“關(guān)聯(lián)點(diǎn)”有_____;(2)已知點(diǎn)E的橫坐標(biāo)是m,若點(diǎn)E在直線上,并且E是正方形ABCD的“關(guān)聯(lián)點(diǎn)”,求m的取值范圍;(3)若將正方形ABCD沿x軸平移,設(shè)該正方形對(duì)角線交點(diǎn)Q的橫坐標(biāo)是n,直線與x軸、y軸分別相交于M、N兩點(diǎn).如果線段MN上的每一個(gè)點(diǎn)都是正方形ABCD的“關(guān)聯(lián)點(diǎn)”,求n的取值范圍.27.(12分)綜合與實(shí)踐﹣猜想、證明與拓廣問題情境:數(shù)學(xué)課上同學(xué)們探究正方形邊上的動(dòng)點(diǎn)引發(fā)的有關(guān)問題,如圖1,正方形ABCD中,點(diǎn)E是BC邊上的一點(diǎn),點(diǎn)D關(guān)于直線AE的對(duì)稱點(diǎn)為點(diǎn)F,直線DF交AB于點(diǎn)H,直線FB與直線AE交于點(diǎn)G,連接DG,CG.猜想證明(1)當(dāng)圖1中的點(diǎn)E與點(diǎn)B重合時(shí)得到圖2,此時(shí)點(diǎn)G也與點(diǎn)B重合,點(diǎn)H與點(diǎn)A重合.同學(xué)們發(fā)現(xiàn)線段GF與GD有確定的數(shù)量關(guān)系和位置關(guān)系,其結(jié)論為:;(2)希望小組的同學(xué)發(fā)現(xiàn),圖1中的點(diǎn)E在邊BC上運(yùn)動(dòng)時(shí),(1)中結(jié)論始終成立,為證明這兩個(gè)結(jié)論,同學(xué)們展開了討論:小敏:根據(jù)軸對(duì)稱的性質(zhì),很容易得到“GF與GD的數(shù)量關(guān)系”…小麗:連接AF,圖中出現(xiàn)新的等腰三角形,如△AFB,…小凱:不妨設(shè)圖中不斷變化的角∠BAF的度數(shù)為n,并設(shè)法用n表示圖中的一些角,可證明結(jié)論.請(qǐng)你參考同學(xué)們的思路,完成證明;(3)創(chuàng)新小組的同學(xué)在圖1中,發(fā)現(xiàn)線段CG∥DF,請(qǐng)你說明理由;聯(lián)系拓廣:(4)如圖3若將題中的“正方形ABCD”變?yōu)椤傲庑蜛BCD“,∠ABC=α,其余條件不變,請(qǐng)?zhí)骄俊螪FG的度數(shù),并直接寫出結(jié)果(用含α的式子表示).

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、A【解題分析】

由于要求四個(gè)數(shù)的點(diǎn)中距離原點(diǎn)最遠(yuǎn)的點(diǎn),所以求這四個(gè)點(diǎn)對(duì)應(yīng)的實(shí)數(shù)絕對(duì)值即可求解.【題目詳解】∵|-1|=1,|-1|=1,∴|-1|>|-1|=1>0,∴四個(gè)數(shù)表示在數(shù)軸上,它們對(duì)應(yīng)的點(diǎn)中,離原點(diǎn)最遠(yuǎn)的是-1.故選A.【題目點(diǎn)撥】本題考查了實(shí)數(shù)與數(shù)軸的對(duì)應(yīng)關(guān)系,以及估算無理數(shù)大小的能力,也利用了數(shù)形結(jié)合的思想.2、D【解題分析】分析:根據(jù)乘私家車平均速度是乘公交車平均速度的2.5倍,乘坐私家車上學(xué)比乘坐公交車上學(xué)所需的時(shí)間少用了15分鐘,利用時(shí)間得出等式方程即可.詳解:設(shè)乘公交車平均每小時(shí)走x千米,根據(jù)題意可列方程為:.故選D.點(diǎn)睛:此題主要考查了由實(shí)際問題抽象出分式方程,解題關(guān)鍵是正確找出題目中的相等關(guān)系,用代數(shù)式表示出相等關(guān)系中的各個(gè)部分,列出方程即可.3、C【解題分析】13個(gè)不同的分?jǐn)?shù)按從小到大排序后,中位數(shù)及中位數(shù)之后的共有7個(gè)數(shù),故只要知道自己的分?jǐn)?shù)和中位數(shù)就可以知道是否獲獎(jiǎng)了.故選C.4、A【解題分析】

根據(jù)同底數(shù)冪的乘法的性質(zhì),冪的乘方的性質(zhì),積的乘方的性質(zhì),合并同類項(xiàng)的法則,對(duì)各選項(xiàng)分析判斷后利用排除法求解.【題目詳解】A.(a2)3=a2×3=a6,故本選項(xiàng)正確;B.a(chǎn)2+a2=2a2,故本選項(xiàng)錯(cuò)誤;C.(3a)?(2a)2=(3a)?(4a2)=12a1+2=12a3,故本選項(xiàng)錯(cuò)誤;D.3a﹣a=2a,故本選項(xiàng)錯(cuò)誤.故選A.【題目點(diǎn)撥】本題考查了合并同類項(xiàng),同底數(shù)冪的乘法,冪的乘方,積的乘方和單項(xiàng)式乘法,理清指數(shù)的變化是解題的關(guān)鍵.5、B【解題分析】

根據(jù)菱形的四邊相等,可得周長【題目詳解】菱形的四邊相等∴菱形的周長=4×8=32故選B.【題目點(diǎn)撥】本題考查了菱形的性質(zhì),并靈活掌握及運(yùn)用菱形的性質(zhì)6、B【解題分析】試題解析:由圖象可知,正比函數(shù)y=2kx的圖象經(jīng)過二、四象限,∴2k<0,得k<0,∴k?2<0,1?k>0,∴函數(shù)y=(k?2)x+1?k圖象經(jīng)過一、二、四象限,故選B.7、A【解題分析】

根據(jù)三角函數(shù)的定義直接求解.【題目詳解】在Rt△ABC中,∠C=90°,AC=9,∵,∴,解得AB=1.故選A8、B【解題分析】試題分析:在數(shù)軸上,離原點(diǎn)越近則說明這個(gè)點(diǎn)所表示的數(shù)的絕對(duì)值越小,根據(jù)數(shù)軸可知本題中點(diǎn)B所表示的數(shù)的絕對(duì)值最?。蔬xB.9、D【解題分析】分析:①先根據(jù)直角三角形30°的性質(zhì)和勾股定理分別求AC和AB,由對(duì)稱的性質(zhì)可知:AB是OC的垂直平分線,所以

②當(dāng)OC經(jīng)過AB的中點(diǎn)E時(shí),OC最大,則C、O兩點(diǎn)距離的最大值為4;

③如圖2,當(dāng)∠ABO=30°時(shí),易證四邊形OACB是矩形,此時(shí)AB與CO互相平分,但所夾銳角為60°,明顯不垂直,或者根據(jù)四點(diǎn)共圓可知:A、C、B、O四點(diǎn)共圓,則AB為直徑,由垂徑定理相關(guān)推論:平分弦(不是直徑)的直徑垂直于這條弦,但當(dāng)這條弦也是直徑時(shí),即OC是直徑時(shí),AB與OC互相平分,但AB與OC不一定垂直;

④如圖3,半徑為2,圓心角為90°,根據(jù)弧長公式進(jìn)行計(jì)算即可.詳解:在Rt△ABC中,∵∴①若C.O兩點(diǎn)關(guān)于AB對(duì)稱,如圖1,∴AB是OC的垂直平分線,則所以①正確;②如圖1,取AB的中點(diǎn)為E,連接OE、CE,∵∴當(dāng)OC經(jīng)過點(diǎn)E時(shí),OC最大,則C.O兩點(diǎn)距離的最大值為4;所以②正確;③如圖2,當(dāng)時(shí),∴四邊形AOBC是矩形,∴AB與OC互相平分,但AB與OC的夾角為不垂直,所以③不正確;④如圖3,斜邊AB的中點(diǎn)D運(yùn)動(dòng)路徑是:以O(shè)為圓心,以2為半徑的圓周的則:所以④正確;綜上所述,本題正確的有:①②④;故選D.點(diǎn)睛:屬于三角形的綜合體,考查了直角三角形的性質(zhì),直角三角形斜邊上中線的性質(zhì),軸對(duì)稱的性質(zhì),弧長公式等,熟練掌握直角三角形斜邊的中線等于斜邊的一半是解題的關(guān)鍵.10、C【解題分析】

首先根據(jù)圓周角定理可知∠B=∠C,再根據(jù)直徑所得的圓周角是直角可得∠ADB=90°,然后根據(jù)三角形的內(nèi)角和定理可得∠DAB+∠B=90°,所以得到∠DAB+∠C=90°,從而得到結(jié)果.【題目詳解】解:∵是的直徑,∴∠ADB=90°.∴∠DAB+∠B=90°.∵∠B=∠C,∴∠DAB+∠C=90°.故選C.【題目點(diǎn)撥】本題考查了圓周角定理及其逆定理和三角形的內(nèi)角和定理,掌握相關(guān)知識(shí)進(jìn)行轉(zhuǎn)化是解題的關(guān)鍵.11、C【解題分析】試題分析:如圖所示:∠NOQ=138°,選項(xiàng)A錯(cuò)誤;∠NOP=48°,選項(xiàng)B錯(cuò)誤;如圖可得∠PON=48°,∠MOQ=42°,所以∠PON比∠MOQ大,選項(xiàng)C正確;由以上可得,∠MOQ與∠MOP不互補(bǔ),選項(xiàng)D錯(cuò)誤.故答案選C.考點(diǎn):角的度量.12、C【解題分析】

試題分析:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=AB,∵AD=AB,∴AE=AD,又∠ABE=∠AHD=90°∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正確;∵∠AHB=(180°﹣45°)=67.5°,∠OHE=∠AHB(對(duì)頂角相等),∴∠OHE=∠AED,∴OE=OH,∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠OHD=∠ODH,∴OH=OD,∴OE=OD=OH,故②正確;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,又BE=DH,∠AEB=∠HDF=45°∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正確;由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正確;∵AB=AH,∠BAE=45°,∴△ABH不是等邊三角形,∴AB≠BH,∴即AB≠HF,故⑤錯(cuò)誤;綜上所述,結(jié)論正確的是①②③④共4個(gè).故選C.【題目點(diǎn)撥】考點(diǎn):1、矩形的性質(zhì);2、全等三角形的判定與性質(zhì);3、角平分線的性質(zhì);4、等腰三角形的判定與性質(zhì)二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、【解題分析】

首先根據(jù)算術(shù)平方根的定義計(jì)算先=2,再求2的算術(shù)平方根即可.【題目詳解】∵=2,∴的算術(shù)平方根為.【題目點(diǎn)撥】本題考查了算術(shù)平方根,屬于簡單題,熟悉算數(shù)平方根的概念是解題關(guān)鍵.14、1【解題分析】

根據(jù)二次根式的乘法法則進(jìn)行計(jì)算即可.【題目詳解】故答案為:1.【題目點(diǎn)撥】考查二次根式的乘法,掌握二次根式乘法的運(yùn)算法則是解題的關(guān)鍵.15、1【解題分析】

根據(jù)平行四邊形定義得:DC∥AB,由兩角對(duì)應(yīng)相等可得:△NQC∽△MQA,△DPC∽△MPA,列比例式可得CN的長.【題目詳解】∵四邊形ABCD是平行四邊形,∴DC∥AB,∴∠CNQ=∠AMQ,∠NCQ=∠MAQ,∴△NQC∽△MQA,同理得:△DPC∽△MPA,∵P、Q為對(duì)角線AC的三等分點(diǎn),∴,,設(shè)CN=x,AM=1x,∴,解得,x=1,∴CN=1,故答案為1.【題目點(diǎn)撥】本題考查了平行四邊形的性質(zhì)和相似三角形的判定和性質(zhì),熟練掌握兩角對(duì)應(yīng)相等,兩三角形相似的判定方法是關(guān)鍵.16、6【解題分析】

首先利用勾股定理求得斜邊長,然后利用三角形中位線定理求得答案即可.【題目詳解】解:∵Rt△ABC中,∠C=90°,AC=3,BC=4,∴AB=AC2+B∵點(diǎn)D、E、F分別是邊AB、AC、BC的中點(diǎn),∴DE=12BC,DF=12AC,EF=∴C△DEF=DE+DF+EF=12BC+12AC+12AB=1故答案為:6.【題目點(diǎn)撥】本題考查了勾股定理和三角形中位線定理.17、增大.【解題分析】

根據(jù)二次函數(shù)的增減性可求得答案【題目詳解】∵二次函數(shù)y=x2的對(duì)稱軸是y軸,開口方向向上,∴當(dāng)y隨x的增大而增大.故答案為:增大.【題目點(diǎn)撥】本題考查的知識(shí)點(diǎn)是二次函數(shù)的性質(zhì),解題的關(guān)鍵是熟練的掌握二次函數(shù)的性質(zhì).18、32°【解題分析】

根據(jù)直徑所對(duì)的圓周角是直角得到∠ADB=90°,求出∠A的度數(shù),根據(jù)圓周角定理解答即可.【題目詳解】∵AB是⊙O的直徑,

∴∠ADB=90°,

∵∠ABD=58°,

∴∠A=32°,

∴∠BCD=32°,

故答案為32°.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)y=﹣3(x+3)(x﹣1)=﹣3x2﹣23x+33;(2)(﹣4,﹣153)和(﹣6,﹣37)(3)(1,﹣43【解題分析】試題分析:(1)根據(jù)二次函數(shù)的交點(diǎn)式確定點(diǎn)A、B的坐標(biāo),求出直線的解析式,求出點(diǎn)D的坐標(biāo),求出拋物線的解析式;(2)作PH⊥x軸于H,設(shè)點(diǎn)P的坐標(biāo)為(m,n),分△BPA∽△ABC和△PBA∽△ABC,根據(jù)相似三角形的性質(zhì)計(jì)算即可;(3)作DM∥x軸交拋物線于M,作DN⊥x軸于N,作EF⊥DM于F,根據(jù)正切的定義求出Q的運(yùn)動(dòng)時(shí)間t=BE+EF時(shí),t最小即可.試題解析:(1)∵y=a(x+3)(x﹣1),∴點(diǎn)A的坐標(biāo)為(﹣3,0)、點(diǎn)B兩的坐標(biāo)為(1,0),∵直線y=﹣x+b經(jīng)過點(diǎn)A,∴b=﹣3,∴y=﹣x﹣3,當(dāng)x=2時(shí),y=﹣5,則點(diǎn)D的坐標(biāo)為(2,﹣5),∵點(diǎn)D在拋物線上,∴a(2+3)(2﹣1)=﹣5,解得,a=﹣,則拋物線的解析式為y=﹣(x+3)(x﹣1)=﹣x2﹣2x+3;(2)作PH⊥x軸于H,設(shè)點(diǎn)P的坐標(biāo)為(m,n),當(dāng)△BPA∽△ABC時(shí),∠BAC=∠PBA,∴tan∠BAC=tan∠PBA,即=,∴=,即n=﹣a(m﹣1),∴,解得,m1=﹣4,m2=1(不合題意,舍去),當(dāng)m=﹣4時(shí),n=5a,∵△BPA∽△ABC,∴=,即AB2=AC?PB,∴42=?,解得,a1=(不合題意,舍去),a2=﹣,則n=5a=﹣,∴點(diǎn)P的坐標(biāo)為(﹣4,﹣);當(dāng)△PBA∽△ABC時(shí),∠CBA=∠PBA,∴tan∠CBA=tan∠PBA,即=,∴=,即n=﹣3a(m﹣1),∴,解得,m1=﹣6,m2=1(不合題意,舍去),當(dāng)m=﹣6時(shí),n=21a,∵△PBA∽△ABC,∴=,即AB2=BC?PB,∴42=?,解得,a1=(不合題意,舍去),a2=﹣,則點(diǎn)P的坐標(biāo)為(﹣6,﹣),綜上所述,符合條件的點(diǎn)P的坐標(biāo)為(﹣4,﹣)和(﹣6,﹣);(3)作DM∥x軸交拋物線于M,作DN⊥x軸于N,作EF⊥DM于F,則tan∠DAN===,∴∠DAN=60°,∴∠EDF=60°,∴DE==EF,∴Q的運(yùn)動(dòng)時(shí)間t=+=BE+EF,∴當(dāng)BE和EF共線時(shí),t最小,則BE⊥DM,E(1,﹣4).考點(diǎn):二次函數(shù)綜合題.20、(1)若某天該商品每件降價(jià)3元,當(dāng)天可獲利1692元;(2)2x;50﹣x.(3)每件商品降價(jià)1元時(shí),商場(chǎng)日盈利可達(dá)到2000元.【解題分析】

(1)根據(jù)“盈利=單件利潤×銷售數(shù)量”即可得出結(jié)論;

(2)根據(jù)“每件商品每降價(jià)1元,商場(chǎng)平均每天可多售出2件”結(jié)合每件商品降價(jià)x元,即可找出日銷售量增加的件數(shù),再根據(jù)原來沒見盈利50元,即可得出降價(jià)后的每件盈利額;

(3)根據(jù)“盈利=單件利潤×銷售數(shù)量”即可列出關(guān)于x的一元二次方程,解之即可得出x的值,再根據(jù)盡快減少庫存即可確定x的值.【題目詳解】(1)當(dāng)天盈利:(50-3)×(30+2×3)=1692(元).

答:若某天該商品每件降價(jià)3元,當(dāng)天可獲利1692元.

(2)∵每件商品每降價(jià)1元,商場(chǎng)平均每天可多售出2件,

∴設(shè)每件商品降價(jià)x元,則商場(chǎng)日銷售量增加2x件,每件商品,盈利(50-x)元.

故答案為2x;50-x.

(3)根據(jù)題意,得:(50-x)×(30+2x)=2000,

整理,得:x2-35x+10=0,

解得:x1=10,x2=1,

∵商城要盡快減少庫存,

∴x=1.

答:每件商品降價(jià)1元時(shí),商場(chǎng)日盈利可達(dá)到2000元.【題目點(diǎn)撥】考查了一元二次方程的應(yīng)用,解題的關(guān)鍵是根據(jù)題意找出數(shù)量關(guān)系列出一元二次方程(或算式).21、5.6千米【解題分析】

設(shè)PD的長為x千米,DA的長為y千米,在Rt△PAD中利用正切的定義得到tan18°=,即y=0.33x,同樣在Rt△PDB中得到y(tǒng)+5.6=1.33x,所以0.33x+5.6=1.33x,然后解方程求出x即可.【題目詳解】設(shè)PD的長為x千米,DA的長為y千米,在Rt△PAD中,tan∠DPA=,即tan18°=,∴y=0.33x,在Rt△PDB中,tan∠DPB=,即tan53°=,∴y+5.6=1.33x,∴0.33x+5.6=1.33x,解得x=5.6,答:此時(shí)觀光船到大橋AC段的距離PD的長為5.6千米.【題目點(diǎn)撥】本題考查了解直角三角形的應(yīng)用:根據(jù)題目已知特點(diǎn)選用適當(dāng)銳角三角函數(shù)或邊角關(guān)系去解直角三角形,得到數(shù)學(xué)問題的答案,再轉(zhuǎn)化得到實(shí)際問題的答案.22、(1)100元和150元;(2)購進(jìn)A種級(jí)別的茶葉67kg,購進(jìn)B種級(jí)別的茶葉133kg.銷售總利潤最大為26650元.【解題分析】試題分析:(1)設(shè)每千克A級(jí)別茶葉和B級(jí)別茶葉的銷售利潤分別為x元和y元;

(2)設(shè)購進(jìn)A種級(jí)別的茶葉akg,購進(jìn)B種級(jí)別的茶葉(200-a)kg.銷售總利潤為w元.構(gòu)建一次函數(shù),利用一次函數(shù)的性質(zhì)即可解決問題.試題解析:解:(1)設(shè)每千克A級(jí)別茶葉和B級(jí)別茶葉的銷售利潤分別為x元和y元.由題意,解得,答:每千克A級(jí)別茶葉和B級(jí)別茶葉的銷售利潤分別為100元和150元.(2)設(shè)購進(jìn)A種級(jí)別的茶葉akg,購進(jìn)B種級(jí)別的茶葉(200﹣a)kg.銷售總利潤為w元.由題意w=100a+150(200﹣a)=﹣50a+30000,∵﹣50<0,∴w隨x的增大而減小,∴當(dāng)a取最小值,w有最大值,∵200﹣a≤2a,∴a≥,∴當(dāng)a=67時(shí),w最小=﹣50×67+30000=26650(元),此時(shí)200﹣67=133kg,答:購進(jìn)A種級(jí)別的茶葉67kg,購進(jìn)B種級(jí)別的茶葉133kg.銷售總利潤最大為26650元.點(diǎn)睛:本題考查一次函數(shù)的應(yīng)用、二元一次方程組、不等式等知識(shí),解題的關(guān)鍵是理解題意,學(xué)會(huì)利用參數(shù)構(gòu)建一次函數(shù)或方程解決問題.23、簡答:∵OA,OB=OC=1500,∴AB=(m).答:隧道AB的長約為635m.【解題分析】試題分析:首先過點(diǎn)C作CO⊥AB,根據(jù)Rt△AOC求出OA的長度,根據(jù)Rt△CBO求出OB的長度,然后進(jìn)行計(jì)算.試題解析:如圖,過點(diǎn)C作CO⊥直線AB,垂足為O,則CO="1500m"∵BC∥OB∴∠DCA=∠CAO=60°,∠DCB=∠CBO=45°∴在Rt△CAO中,OA=1500tan60°=1500×3在Rt△CBO中,OB=1500×tan45°=1500m∴AB=1500-5003≈1500-865=635(m)答:隧道AB的長約為635m.考點(diǎn):銳角三角函數(shù)的應(yīng)用.24、商人盈利的可能性大.【解題分析】試題分析:根據(jù)幾何概率的定義,面積比即概率.圖中A,B,C所占的面積與總面積之比即為A,B,C各自的概率,算出相應(yīng)的可能性,乘以錢數(shù),比較即可.試題解析:商人盈利的可能性大.商人收費(fèi):80××2=80(元),商人獎(jiǎng)勵(lì):80××3+80××1=60(元),因?yàn)?0>60,所以商人盈利的可能性大.25、(1)乙在整理數(shù)據(jù)時(shí)漏了一個(gè)數(shù)據(jù),它在169.5﹣﹣174.5內(nèi);(答案不唯一);(2)120°;(3)160或1;(4).【解題分析】

(1)對(duì)比圖①與圖②,找出圖②中與圖①不相同的地方;(2)則159.5﹣164.5這一部分的人數(shù)占全班人數(shù)的比乘以360°;(3)身高排序?yàn)榈?0和第31的兩名同學(xué)的身高的平均數(shù);(4)用樹狀圖法求概率.【題目詳解】解:(1)對(duì)比甲乙的直方圖可得:乙在整理數(shù)據(jù)時(shí)漏了一個(gè)數(shù)據(jù),它在169.5﹣﹣174.5內(nèi);(答案不唯一)(2)根據(jù)頻數(shù)分布直方圖中每一組內(nèi)的頻數(shù)總和等于總數(shù)據(jù)個(gè)數(shù);將甲的數(shù)據(jù)相加可得10+15+20+10+5=60;由題意可知159.5﹣164.5這一部分所對(duì)應(yīng)的人數(shù)為20人,所以這一部分所對(duì)應(yīng)的扇形圓心角的度數(shù)為20÷60×360=120°,故答案為120°;(3)根據(jù)中位數(shù)的求法,將甲的數(shù)據(jù)從小到大依次排列,可得第30與31名的數(shù)據(jù)在第3組,由乙的數(shù)據(jù)知小于162的數(shù)據(jù)有36個(gè),則這兩個(gè)只能是160或1.故答案為160或1;(4)列樹狀圖得:P(一男一女)==.26、(1)正方形ABCD的“關(guān)聯(lián)點(diǎn)”為P2,P3;(2)或;(3).【解題分析】

(1)正方形ABCD的“關(guān)聯(lián)點(diǎn)”中正方形的內(nèi)切圓和外切圓之間(包括兩個(gè)圓上的點(diǎn)),由此畫出圖形即可判斷;(2)因?yàn)镋是正方形ABCD的“關(guān)聯(lián)點(diǎn)”,所以E在正方形ABCD的內(nèi)切圓和外接圓之間(包括兩個(gè)圓上的點(diǎn)),因?yàn)镋在直線上,推出點(diǎn)E在線段FG上,求出點(diǎn)F、G的橫坐標(biāo),再根據(jù)對(duì)稱性即可解決問題;(3)因?yàn)榫€段MN上的每一個(gè)點(diǎn)都是正方形ABCD的“關(guān)聯(lián)點(diǎn)”,分兩種情形:①如圖3中,MN與小⊙Q相切于點(diǎn)F,求出此時(shí)點(diǎn)Q的橫坐標(biāo);②M如圖4中,落在大⊙Q上,求出點(diǎn)Q的橫坐標(biāo)即可解決問題;【題目詳解】(1)由題意正方形ABCD的“關(guān)聯(lián)點(diǎn)”中正方形的內(nèi)切圓和外切圓之間(包括兩個(gè)圓上的點(diǎn)),觀察圖象可知:正方形ABCD的“關(guān)聯(lián)點(diǎn)”為P2,P3;(2)作正方形ABCD的內(nèi)切圓和外接圓,∴OF=1,,.∵E是正方形ABCD的“關(guān)聯(lián)點(diǎn)”,∴E在正方形ABCD的內(nèi)切圓和外接圓之間(包括兩個(gè)圓上的點(diǎn)),∵點(diǎn)E在直線上,∴點(diǎn)E在線段FG上.分別作FF’⊥x軸,GG’⊥x軸,∵OF=1,,∴,.∴.根據(jù)對(duì)稱性,可以得出.∴或.(3)∵、N(0,1),∴,ON=1.∴∠OMN=60°.∵線段MN上的每一個(gè)點(diǎn)都是正方形ABCD的“關(guān)聯(lián)點(diǎn)”,①M(fèi)N與小⊙Q相切于點(diǎn)F,如圖3中,∵QF=1,∠OMN=60°,∴.∵,∴.∴.②M落在大⊙Q上,如圖4中,∵,,∴.∴.綜上:.【題目點(diǎn)撥】本題考查一次函數(shù)綜合題、正方形的性質(zhì)、直線與圓的位置關(guān)系等知識(shí),解題的關(guān)鍵是理解題意,學(xué)會(huì)尋找特殊位置解決數(shù)學(xué)問題,屬于中考?jí)狠S題.27、(1)GF=GD,GF⊥GD;(2)見解析;(3)見解析;(4)90°﹣.【解題分析】

(1)根據(jù)四邊形ABCD是正方形可得∠ABD=∠ADB=45°,∠BAD=90°,點(diǎn)D關(guān)于直線AE的對(duì)稱點(diǎn)為點(diǎn)F,即可證明出∠DBF=90°,故GF⊥GD,再根據(jù)∠F=∠ADB,即可證明GF=GD;(2)連接AF,證明∠AFG=∠ADG,再根據(jù)四邊形ABCD是正方形,得出AB=AD,∠BAD=90°,設(shè)∠BAF=n,∠FAD=90°+n,可得出∠FGD=360°﹣∠FAD﹣∠AFG﹣∠ADG=360°﹣(90°+n)﹣(180°﹣n)=90°,故GF⊥GD;(3)連接BD,由(2)知,F(xiàn)G=DG,F(xiàn)G⊥DG,再分別求出∠

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論