河南省開封市東南區(qū)重點(diǎn)名校2024屆中考數(shù)學(xué)押題試卷含解析_第1頁(yè)
河南省開封市東南區(qū)重點(diǎn)名校2024屆中考數(shù)學(xué)押題試卷含解析_第2頁(yè)
河南省開封市東南區(qū)重點(diǎn)名校2024屆中考數(shù)學(xué)押題試卷含解析_第3頁(yè)
河南省開封市東南區(qū)重點(diǎn)名校2024屆中考數(shù)學(xué)押題試卷含解析_第4頁(yè)
河南省開封市東南區(qū)重點(diǎn)名校2024屆中考數(shù)學(xué)押題試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩21頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

河南省開封市東南區(qū)重點(diǎn)名校2024屆中考數(shù)學(xué)押題試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.將一把直尺與一塊三角板如圖所示放置,若則∠2的度數(shù)為()A.50° B.110° C.130° D.150°2.若不等式組無(wú)解,那么m的取值范圍是()A.m≤2 B.m≥2 C.m<2 D.m>23.小宇媽媽上午在某水果超市買了16.5元錢的葡萄,晚上散步經(jīng)過(guò)該水果超市時(shí),發(fā)現(xiàn)同一批葡萄的價(jià)格降低了25%,小宇媽媽又買了16.5元錢的葡萄,結(jié)果恰好比早上多了0.5千克.若設(shè)早上葡萄的價(jià)格是x元/千克,則可列方程()A. B.C. D.4.如圖,在△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,P點(diǎn)是BD的中點(diǎn),若AD=6,則CP的長(zhǎng)為()A.3.5 B.3 C.4 D.4.55.如圖,△ABC中,D為BC的中點(diǎn),以D為圓心,BD長(zhǎng)為半徑畫一弧交AC于E點(diǎn),若∠A=60°,∠B=100°,BC=4,則扇形BDE的面積為何?()A. B. C. D.6.如圖,在平面直角坐標(biāo)系中,矩形ABOC的兩邊在坐標(biāo)軸上,OB=1,點(diǎn)A在函數(shù)y=﹣(x<0)的圖象上,將此矩形向右平移3個(gè)單位長(zhǎng)度到A1B1O1C1的位置,此時(shí)點(diǎn)A1在函數(shù)y=(x>0)的圖象上,C1O1與此圖象交于點(diǎn)P,則點(diǎn)P的縱坐標(biāo)是()A. B. C. D.7.如圖,AB是⊙O的弦,半徑OC⊥AB于D,若CD=2,⊙O的半徑為5,那么AB的長(zhǎng)為()A.3 B.4 C.6 D.88.一次函數(shù)的圖象不經(jīng)過(guò)()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.如圖,在正方形ABCD外側(cè),作等邊三角形ADE,AC,BE相交于點(diǎn)F,則∠BFC為()A.75° B.60° C.55° D.45°10.如圖,每個(gè)小正方形的邊長(zhǎng)為1,A、B、C是小正方形的頂點(diǎn),則∠ABC的度數(shù)為()A.90° B.60° C.45° D.30°二、填空題(共7小題,每小題3分,滿分21分)11.如圖,將正方形OABC放在平面直角坐標(biāo)系中,O是原點(diǎn),A的坐標(biāo)為(1,),則點(diǎn)C的坐標(biāo)為_____.12.在平面直角坐標(biāo)系中,直線l:y=x﹣1與x軸交于點(diǎn)A1,如圖所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形AnBnCnCn﹣1,使得點(diǎn)A1、A2、A3、…在直線l上,點(diǎn)C1、C2、C3、…在y軸正半軸上,則點(diǎn)Bn的坐標(biāo)是_____.13.如圖,在△ABC中,∠B=40°,∠C=45°,AB的垂直平分線交BC于點(diǎn)D,AC的垂直平分線交BC于點(diǎn)E,則∠DAE=______.14.如圖,在△ABC中,AB=3+,∠B=45°,∠C=105°,點(diǎn)D、E、F分別在AC、BC、AB上,且四邊形ADEF為菱形,若點(diǎn)P是AE上一個(gè)動(dòng)點(diǎn),則PF+PB的最小值為_____.15.等腰中,是BC邊上的高,且,則等腰底角的度數(shù)為__________.16.如圖,△ABC≌△ADE,∠EAC=40°,則∠B=_______°.17.分解因式:x2y﹣2xy2+y3=_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,一次函數(shù)y=ax﹣1的圖象與反比例函數(shù)的圖象交于A,B兩點(diǎn),與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,已知OA=,tan∠AOC=(1)求a,k的值及點(diǎn)B的坐標(biāo);(2)觀察圖象,請(qǐng)直接寫出不等式ax﹣1≥的解集;(3)在y軸上存在一點(diǎn)P,使得△PDC與△ODC相似,請(qǐng)你求出P點(diǎn)的坐標(biāo).19.(5分)在一個(gè)不透明的口袋里裝有四個(gè)球,這四個(gè)球上分別標(biāo)記數(shù)字﹣3、﹣1、0、2,除數(shù)字不同外,這四個(gè)球沒(méi)有任何區(qū)別.從中任取一球,求該球上標(biāo)記的數(shù)字為正數(shù)的概率;從中任取兩球,將兩球上標(biāo)記的數(shù)字分別記為x、y,求點(diǎn)(x,y)位于第二象限的概率.20.(8分)如圖,∠AOB=45°,點(diǎn)M,N在邊OA上,點(diǎn)P是邊OB上的點(diǎn).(1)利用直尺和圓規(guī)在圖1確定點(diǎn)P,使得PM=PN;(2)設(shè)OM=x,ON=x+4,①若x=0時(shí),使P、M、N構(gòu)成等腰三角形的點(diǎn)P有個(gè);②若使P、M、N構(gòu)成等腰三角形的點(diǎn)P恰好有三個(gè),則x的值是____________.21.(10分)如圖1,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx﹣與x軸交于點(diǎn)A(1,0)和點(diǎn)B(﹣3,0).繞點(diǎn)A旋轉(zhuǎn)的直線l:y=kx+b1交拋物線于另一點(diǎn)D,交y軸于點(diǎn)C.(1)求拋物線的函數(shù)表達(dá)式;(2)當(dāng)點(diǎn)D在第二象限且滿足CD=5AC時(shí),求直線l的解析式;(3)在(2)的條件下,點(diǎn)E為直線l下方拋物線上的一點(diǎn),直接寫出△ACE面積的最大值;(4)如圖2,在拋物線的對(duì)稱軸上有一點(diǎn)P,其縱坐標(biāo)為4,點(diǎn)Q在拋物線上,當(dāng)直線l與y軸的交點(diǎn)C位于y軸負(fù)半軸時(shí),是否存在以點(diǎn)A,D,P,Q為頂點(diǎn)的平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)D的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.22.(10分)某中學(xué)開展“漢字聽寫大賽”活動(dòng),為了解學(xué)生的參與情況,在該校隨機(jī)抽取了四個(gè)班級(jí)學(xué)生進(jìn)行調(diào)查,將收集的數(shù)據(jù)整理并繪制成圖1和圖2兩幅尚不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息,解答下列問(wèn)題:(1)這四個(gè)班參與大賽的學(xué)生共__________人;(2)請(qǐng)你補(bǔ)全兩幅統(tǒng)計(jì)圖;(3)求圖1中甲班所對(duì)應(yīng)的扇形圓心角的度數(shù);(4)若四個(gè)班級(jí)的學(xué)生總數(shù)是160人,全校共2000人,請(qǐng)你估計(jì)全校的學(xué)生中參與這次活動(dòng)的大約有多少人.23.(12分)如圖1,B(2m,0),C(3m,0)是平面直角坐標(biāo)系中兩點(diǎn),其中m為常數(shù),且m>0,E(0,n)為y軸上一動(dòng)點(diǎn),以BC為邊在x軸上方作矩形ABCD,使AB=2BC,畫射線OA,把△ADC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°得△A′D′C′,連接ED′,拋物線()過(guò)E,A′兩點(diǎn).(1)填空:∠AOB=°,用m表示點(diǎn)A′的坐標(biāo):A′(,);(2)當(dāng)拋物線的頂點(diǎn)為A′,拋物線與線段AB交于點(diǎn)P,且時(shí),△D′OE與△ABC是否相似?說(shuō)明理由;(3)若E與原點(diǎn)O重合,拋物線與射線OA的另一個(gè)交點(diǎn)為點(diǎn)M,過(guò)M作MN⊥y軸,垂足為N:①求a,b,m滿足的關(guān)系式;②當(dāng)m為定值,拋物線與四邊形ABCD有公共點(diǎn),線段MN的最大值為10,請(qǐng)你探究a的取值范圍.24.(14分)已知:二次函數(shù)圖象的頂點(diǎn)坐標(biāo)是(3,5),且拋物線經(jīng)過(guò)點(diǎn)A(1,3).(1)求此拋物線的表達(dá)式;(2)如果點(diǎn)A關(guān)于該拋物線對(duì)稱軸的對(duì)稱點(diǎn)是B點(diǎn),且拋物線與y軸的交點(diǎn)是C點(diǎn),求△ABC的面積.

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、C【解題分析】

如圖,根據(jù)長(zhǎng)方形的性質(zhì)得出EF∥GH,推出∠FCD=∠2,代入∠FCD=∠1+∠A求出即可.【題目詳解】∵EF∥GH,∴∠FCD=∠2,∵∠FCD=∠1+∠A,∠1=40°,∠A=90°,∴∠2=∠FCD=130°,故選C.【題目點(diǎn)撥】本題考查了平行線的性質(zhì),三角形外角的性質(zhì)等,準(zhǔn)確識(shí)圖是解題的關(guān)鍵.2、A【解題分析】

先求出每個(gè)不等式的解集,再根據(jù)不等式組解集的求法和不等式組無(wú)解的條件,即可得到m的取值范圍.【題目詳解】由①得,x<m,由②得,x>1,又因?yàn)椴坏仁浇M無(wú)解,所以m≤1.故選A.【題目點(diǎn)撥】此題的實(shí)質(zhì)是考查不等式組的求法,求不等式組的解集,要根據(jù)以下原則:同大取較大,同小較小,小大大小中間找,大大小小解不了.3、B【解題分析】分析:根據(jù)數(shù)量=,可知第一次買了千克,第二次買了,根據(jù)第二次恰好比第一次多買了0.5千克列方程即可.詳解:設(shè)早上葡萄的價(jià)格是x元/千克,由題意得,.故選B.點(diǎn)睛:本題考查了分式方程的實(shí)際應(yīng)用,解題的關(guān)鍵是讀懂題意,找出列方程所用到的等量關(guān)系.4、B【解題分析】

解:∵∠ACB=90°,∠ABC=60°,∴∠A=10°,∵BD平分∠ABC,∴∠ABD=∠ABC=10°,∴∠A=∠ABD,∴BD=AD=6,∵在Rt△BCD中,P點(diǎn)是BD的中點(diǎn),∴CP=BD=1.故選B.5、C【解題分析】分析:求出扇形的圓心角以及半徑即可解決問(wèn)題;詳解:∵∠A=60°,∠B=100°,∴∠C=180°﹣60°﹣100°=20°,∵DE=DC,∴∠C=∠DEC=20°,∴∠BDE=∠C+∠DEC=40°,∴S扇形DBE=.故選C.點(diǎn)睛:本題考查扇形的面積公式、三角形內(nèi)角和定理等知識(shí),解題的關(guān)鍵是記住扇形的面積公式:S=.6、C【解題分析】分析:先求出A點(diǎn)坐標(biāo),再根據(jù)圖形平移的性質(zhì)得出A1點(diǎn)的坐標(biāo),故可得出反比例函數(shù)的解析式,把O1點(diǎn)的橫坐標(biāo)代入即可得出結(jié)論.詳解:∵OB=1,AB⊥OB,點(diǎn)A在函數(shù)(x<0)的圖象上,∴當(dāng)x=?1時(shí),y=2,∴A(?1,2).∵此矩形向右平移3個(gè)單位長(zhǎng)度到的位置,∴B1(2,0),∴A1(2,2).∵點(diǎn)A1在函數(shù)(x>0)的圖象上,∴k=4,∴反比例函數(shù)的解析式為,O1(3,0),∵C1O1⊥x軸,∴當(dāng)x=3時(shí),∴P故選C.點(diǎn)睛:考查反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,坐標(biāo)與圖形變化-平移,解題的關(guān)鍵是運(yùn)用雙曲線方程求出點(diǎn)A的坐標(biāo),利用平移的性質(zhì)求出點(diǎn)A1的坐標(biāo).7、D【解題分析】

連接OA,構(gòu)建直角三角形AOD;利用垂徑定理求得AB=2AD;然后在直角三角形AOD中由勾股定理求得AD的長(zhǎng)度,從而求得AB=2AD=1.【題目詳解】連接OA.∵⊙O的半徑為5,CD=2,∵OD=5-2=3,即OD=3;又∵AB是⊙O的弦,OC⊥AB,∴AD=AB;在直角三角形ODC中,根據(jù)勾股定理,得AD==4,∴AB=1.故選D.【題目點(diǎn)撥】本題考查了垂徑定理、勾股定理.解答該題的關(guān)鍵是通過(guò)作輔助線OA構(gòu)建直角三角形,在直角三角形中利用勾股定理求相關(guān)線段的長(zhǎng)度.8、B【解題分析】

由二次函數(shù),可得函數(shù)圖像經(jīng)過(guò)一、三、四象限,所以不經(jīng)過(guò)第二象限【題目詳解】解:∵,∴函數(shù)圖象一定經(jīng)過(guò)一、三象限;又∵,函數(shù)與y軸交于y軸負(fù)半軸,

∴函數(shù)經(jīng)過(guò)一、三、四象限,不經(jīng)過(guò)第二象限故選B【題目點(diǎn)撥】此題考查一次函數(shù)的性質(zhì),要熟記一次函數(shù)的k、b對(duì)函數(shù)圖象位置的影響9、B【解題分析】

由正方形的性質(zhì)和等邊三角形的性質(zhì)得出∠BAE=150°,AB=AE,由等腰三角形的性質(zhì)和內(nèi)角和定理得出∠ABE=∠AEB=15°,再運(yùn)用三角形的外角性質(zhì)即可得出結(jié)果.【題目詳解】解:∵四邊形ABCD是正方形,∴∠BAD=90°,AB=AD,∠BAF=45°,∵△ADE是等邊三角形,∴∠DAE=60°,AD=AE,∴∠BAE=90°+60°=150°,AB=AE,∴∠ABE=∠AEB=(180°﹣150°)=15°,∴∠BFC=∠BAF+∠ABE=45°+15°=60°;故選:B.【題目點(diǎn)撥】本題考查了正方形的性質(zhì)、等邊三角形的性質(zhì)、等腰三角形的判定與性質(zhì)、三角形的外角性質(zhì);熟練掌握正方形和等邊三角形的性質(zhì),并能進(jìn)行推理計(jì)算是解決問(wèn)題的關(guān)鍵.10、C【解題分析】試題分析:根據(jù)勾股定理即可得到AB,BC,AC的長(zhǎng)度,進(jìn)行判斷即可.試題解析:連接AC,如圖:根據(jù)勾股定理可以得到:AC=BC=,AB=.∵()1+()1=()1.∴AC1+BC1=AB1.∴△ABC是等腰直角三角形.∴∠ABC=45°.故選C.考點(diǎn):勾股定理.二、填空題(共7小題,每小題3分,滿分21分)11、(﹣,1)【解題分析】如圖作AF⊥x軸于F,CE⊥x軸于E.∵四邊形ABCD是正方形,∴OA=OC,∠AOC=90°,∵∠COE+∠AOF=90°,∠AOF+∠OAF=90°,∴∠COE=∠OAF,在△COE和△OAF中,,∴△COE≌△OAF,∴CE=OF,OE=AF,∵A(1,),∴CE=OF=1,OE=AF=,∴點(diǎn)C坐標(biāo)(﹣,1),故答案為(,1).點(diǎn)睛:本題考查正方形的性質(zhì)、全等三角形的判定和性質(zhì)等知識(shí),坐標(biāo)與圖形的性質(zhì),解題的關(guān)鍵是學(xué)會(huì)添加常用的輔助線,構(gòu)造全等三角形解決問(wèn)題,屬于中考??碱}型.注意:距離都是非負(fù)數(shù),而坐標(biāo)可以是負(fù)數(shù),在由距離求坐標(biāo)時(shí),需要加上恰當(dāng)?shù)姆?hào).12、(2n﹣1,2n﹣1).【解題分析】

解:∵y=x-1與x軸交于點(diǎn)A1,

∴A1點(diǎn)坐標(biāo)(1,0),

∵四邊形A1B1C1O是正方形,

∴B1坐標(biāo)(1,1),

∵C1A2∥x軸,

∴A2坐標(biāo)(2,1),

∵四邊形A2B2C2C1是正方形,

∴B2坐標(biāo)(2,3),

∵C2A3∥x軸,

∴A3坐標(biāo)(4,3),

∵四邊形A3B3C3C2是正方形,

∴B3(4,7),

∵B1(20,21-1),B2(21,22-1),B3(22,23-1),…,

∴Bn坐標(biāo)(2n-1,2n-1).

故答案為(2n-1,2n-1).13、10°【解題分析】

根據(jù)線段的垂直平分線得出AD=BD,AE=CE,推出∠B=∠BAD,∠C=∠CAE,求出∠BAD+∠CAE的度數(shù)即可得到答案.【題目詳解】∵點(diǎn)D、E分別是AB、AC邊的垂直平分線與BC的交點(diǎn),∴AD=BD,AE=CE,∴∠B=∠BAD,∠C=∠CAE,∵∠B=40°,∠C=45°,∴∠B+∠C=85°,∴∠BAD+∠CAE=85°,∴∠DAE=∠BAC-(∠BAD+∠CAE)=180°-85°-85°=10°,故答案為10°【題目點(diǎn)撥】本題主要考查對(duì)等腰三角形的性質(zhì),三角形的內(nèi)角和定理,線段的垂直平分線的性質(zhì)等知識(shí)點(diǎn)的理解和掌握,能綜合運(yùn)用這些性質(zhì)進(jìn)行計(jì)算是解此題的關(guān)鍵.14、【解題分析】

如圖,連接OD,BD,作DH⊥AB于H,EG⊥AB于G.由四邊形ADEF是菱形,推出F,D關(guān)于直線AE對(duì)稱,推出PF=PD,推出PF+PB=PA+PB,由PD+PB≥BD,推出PF+PB的最小值是線段BD的長(zhǎng).【題目詳解】如圖,連接OD,BD,作DH⊥AB于H,EG⊥AB于G.∵四邊形ADEF是菱形,∴F,D關(guān)于直線AE對(duì)稱,∴PF=PD,∴PF+PB=PA+PB,∵PD+PB≥BD,∴PF+PB的最小值是線段BD的長(zhǎng),∵∠CAB=180°-105°-45°=30°,設(shè)AF=EF=AD=x,則DH=EG=x,F(xiàn)G=x,∵∠EGB=45°,EG⊥BG,∴EG=BG=x,∴x+x+x=3+,∴x=2,∴DH=1,BH=3,∴BD==,∴PF+PB的最小值為,故答案為.【題目點(diǎn)撥】本題考查軸對(duì)稱-最短問(wèn)題,菱形的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)用轉(zhuǎn)化的思想思考問(wèn)題,學(xué)會(huì)利用軸對(duì)稱解決最短問(wèn)題.15、,,【解題分析】

分三種情況:①點(diǎn)A是頂角頂點(diǎn)時(shí),②點(diǎn)A是底角頂點(diǎn),且AD在△ABC外部時(shí),③點(diǎn)A是底角頂點(diǎn),且AD在△ABC內(nèi)部時(shí),再結(jié)合直角三角形中,30°的角所對(duì)的直角邊等于斜邊的一半即可求解.【題目詳解】①如圖,若點(diǎn)A是頂角頂點(diǎn)時(shí),∵AB=AC,AD⊥BC,∴BD=CD,∵,∴AD=BD=CD,在Rt△ABD中,∠B=∠BAD=;②如圖,若點(diǎn)A是底角頂點(diǎn),且AD在△ABC外部時(shí),∵,AC=BC,∴,∴∠ACD=30°,∴∠BAC=∠ABC=×30°=15°;③如圖,若點(diǎn)A是底角頂點(diǎn),且AD在△ABC內(nèi)部時(shí),∵,AC=BC,∴,∴∠C=30°,∴∠BAC=∠ABC=(180°-30°)=75°;綜上所述,△ABC底角的度數(shù)為45°或15°或75°;故答案為,,.【題目點(diǎn)撥】本題考查了等腰三角形的性質(zhì)和直角三角形中30°的角所對(duì)的直角邊等于斜邊的一半的性質(zhì),解題的關(guān)鍵是要分情況討論.16、1°【解題分析】

根據(jù)全等三角形的對(duì)應(yīng)邊相等、對(duì)應(yīng)角相等得到∠BAC=∠DAE,AB=AD,根據(jù)等腰三角形的性質(zhì)和三角形內(nèi)角和定理計(jì)算即可.【題目詳解】∵△ABC≌△ADE,∴∠BAC=∠DAE,AB=AD,∴∠BAD=∠EAC=40°,∴∠B=(180°-40°)÷2=1°,故答案為1.【題目點(diǎn)撥】本題考查的是全等三角形的性質(zhì)和三角形內(nèi)角和定理,掌握全等三角形的對(duì)應(yīng)邊相等、對(duì)應(yīng)角相等是解題的關(guān)鍵.17、y(x﹣y)2【解題分析】

原式提取公因式,再利用完全平方公式分解即可【題目詳解】x2y﹣2xy2+y3=y(tǒng)(x2-2xy+y2)=y(x-y)2.【題目點(diǎn)撥】本題考查了提公因式法與公式法的綜合運(yùn)用,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)a=,k=3,B(-,-2)(2)﹣≤x<0或x≥3;(3)(0,)或(0,0)【解題分析】

1)過(guò)A作AE⊥x軸,交x軸于點(diǎn)E,在Rt△AOE中,根據(jù)tan∠AOC的值,設(shè)AE=x,得到OE=3x,再由OA的長(zhǎng),利用勾股定理列出關(guān)于x的方程,求出方程的解得到x的值,確定出A坐標(biāo),將A坐標(biāo)代入一次函數(shù)解析式求出a的值,代入反比例解析式求出k的值,聯(lián)立一次函數(shù)與反比例函數(shù)解析式求出B的坐標(biāo);(2)由A與B交點(diǎn)橫坐標(biāo),根據(jù)函數(shù)圖象確定出所求不等式的解集即可;(3)顯然P與O重合時(shí),滿足△PDC與△ODC相似;當(dāng)PC⊥CD,即∠PCD=時(shí),滿足三角形PDC與三角形CDO相等,利用同角的余角相等得到一對(duì)角相等,再由一對(duì)直角相等得到三角形PCO與三角形CDO相似,由相似得比例,根據(jù)OD,OC的長(zhǎng)求出OP的長(zhǎng),即可確定出P的坐標(biāo).【題目詳解】解:(1)過(guò)A作AE⊥x軸,交x軸于點(diǎn)E,在Rt△AOE中,OA=,tan∠AOC=,設(shè)AE=x,則OE=3x,根據(jù)勾股定理得:OA2=OE2+AE2,即10=9x2+x2,解得:x=1或x=﹣1(舍去),∴OE=3,AE=1,即A(3,1),將A坐標(biāo)代入一次函數(shù)y=ax﹣1中,得:1=3a﹣1,即a=,將A坐標(biāo)代入反比例解析式得:1=,即k=3,聯(lián)立一次函數(shù)與反比例解析式得:,消去y得:x﹣1=,解得:x=﹣或x=3,將x=﹣代入得:y=﹣1﹣1=﹣2,即B(﹣,﹣2);(2)由A(3,1),B(﹣,﹣2),根據(jù)圖象得:不等式x﹣1≥的解集為﹣≤x<0或x≥3;(3)顯然P與O重合時(shí),△PDC∽△ODC;當(dāng)PC⊥CD,即∠PCD=90°時(shí),∠PCO+∠DCO=90°,∵∠PCD=∠COD=90°,∠PCD=∠CDO,∴△PDC∽△CDO,∵∠PCO+∠CPO=90°,∴∠DCO=∠CPO,∵∠POC=∠COD=90°,∴△PCO∽△CDO,∴=,對(duì)于一次函數(shù)解析式y(tǒng)=x﹣1,令x=0,得到y(tǒng)=﹣1;令y=0,得到x=,∴C(,0),D(0,﹣1),即OC=,OD=1,∴=,即OP=,此時(shí)P坐標(biāo)為(0,),綜上,滿足題意P的坐標(biāo)為(0,)或(0,0).【題目點(diǎn)撥】此題屬于反比例函數(shù)綜合題,涉及的知識(shí)有:待定系數(shù)法確定函數(shù)解析式,一次函數(shù)與反比例函數(shù)的交點(diǎn)問(wèn)題,坐標(biāo)與圖形性質(zhì),勾股定理,銳角三角函數(shù)定義,相似三角形的判定與性質(zhì),利用了數(shù)形結(jié)合的思想,熟練運(yùn)用數(shù)形結(jié)合思想是解題的關(guān)鍵.19、(1);(2).【解題分析】

(1)直接根據(jù)概率公式求解;

(2)先利用樹狀圖展示所有12種等可能的結(jié)果數(shù),再找出第二象限內(nèi)的點(diǎn)的個(gè)數(shù),然后根據(jù)概率公式計(jì)算點(diǎn)(x,y)位于第二象限的概率.【題目詳解】(1)正數(shù)為2,所以該球上標(biāo)記的數(shù)字為正數(shù)的概率為;(2)畫樹狀圖為:共有12種等可能的結(jié)果數(shù),它們是(﹣3,﹣1)、(﹣3,0)、(﹣3,2)、(﹣1,0)、(﹣1,2)、(0,2)、(﹣1,﹣3)、(0,﹣3)、(2,﹣3)、(0,﹣1)、(2,﹣1)、(2,0),其中第二象限的點(diǎn)有2個(gè),所以點(diǎn)(x,y)位于第二象限的概率==.【題目點(diǎn)撥】本題考查列表法與樹狀圖法:利用列表法或樹狀圖法展示所有可能的結(jié)果求出n,再?gòu)闹羞x出符合事件A或B的結(jié)果數(shù)目m,求出概率.20、(1)見解析;(2)①1;②:x=0或x=4﹣4或4<x<4;【解題分析】

(1)分別以M、N為圓心,以大于MN為半徑作弧,兩弧相交與兩點(diǎn),過(guò)兩弧交點(diǎn)的直線就是MN的垂直平分線;(2)①分為PM=PN,MP=MN,NP=NM三種情況進(jìn)行判斷即可;②如圖1,構(gòu)建腰長(zhǎng)為4的等腰直角△OMC,和半徑為4的⊙M,發(fā)現(xiàn)M在點(diǎn)D的位置時(shí),滿足條件;如圖4,根據(jù)等腰三角形三種情況的畫法:分別以M、N為圓心,以MN為半徑畫弧,與OB的交點(diǎn)就是滿足條件的點(diǎn)P,再以MN為底邊的等腰三角形,通過(guò)畫圖發(fā)現(xiàn),無(wú)論x取何值,以MN為底邊的等腰三角形都存在一個(gè),所以只要滿足以MN為腰的三角形有兩個(gè)即可.【題目詳解】解:(1)如圖所示:(2)①如圖所示:故答案為1.②如圖1,以M為圓心,以4為半徑畫圓,當(dāng)⊙M與OB相切時(shí),設(shè)切點(diǎn)為C,⊙M與OA交于D,∴MC⊥OB,∵∠AOB=45°,∴△MCO是等腰直角三角形,∴MC=OC=4,∴當(dāng)M與D重合時(shí),即時(shí),同理可知:點(diǎn)P恰好有三個(gè);如圖4,取OM=4,以M為圓心,以O(shè)M為半徑畫圓.則⊙M與OB除了O外只有一個(gè)交點(diǎn),此時(shí)x=4,即以∠PMN為頂角,MN為腰,符合條件的點(diǎn)P有一個(gè),以N圓心,以MN為半徑畫圓,與直線OB相離,說(shuō)明此時(shí)以∠PNM為頂角,以MN為腰,符合條件的點(diǎn)P不存在,還有一個(gè)是以NM為底邊的符合條件的點(diǎn)P;點(diǎn)M沿OA運(yùn)動(dòng),到M1時(shí),發(fā)現(xiàn)⊙M1與直線OB有一個(gè)交點(diǎn);∴當(dāng)時(shí),圓M在移動(dòng)過(guò)程中,則會(huì)與OB除了O外有兩個(gè)交點(diǎn),滿足點(diǎn)P恰好有三個(gè);綜上所述,若使點(diǎn)P,M,N構(gòu)成等腰三角形的點(diǎn)P恰好有三個(gè),則x的值是:x=0或或故答案為x=0或或【題目點(diǎn)撥】本題考查了等腰三角形的判定,有難度,本題通過(guò)數(shù)形結(jié)合的思想解決問(wèn)題,解題的關(guān)鍵是熟練掌握已知一邊,作等腰三角形的畫法.21、(1)y=x2+x﹣;(2)y=﹣x+1;(3)當(dāng)x=﹣2時(shí),最大值為;(4)存在,點(diǎn)D的橫坐標(biāo)為﹣3或或﹣.【解題分析】

(1)設(shè)二次函數(shù)的表達(dá)式為:y=a(x+3)(x﹣1)=ax2+2ax﹣3a,即可求解;(2)OC∥DF,則即可求解;(3)由S△ACE=S△AME﹣S△CME即可求解;(4)分當(dāng)AP為平行四邊形的一條邊、對(duì)角線兩種情況,分別求解即可.【題目詳解】(1)設(shè)二次函數(shù)的表達(dá)式為:y=a(x+3)(x﹣1)=ax2+2ax﹣3a,即:解得:故函數(shù)的表達(dá)式為:①;(2)過(guò)點(diǎn)D作DF⊥x軸交于點(diǎn)F,過(guò)點(diǎn)E作y軸的平行線交直線AD于點(diǎn)M,∵OC∥DF,∴OF=5OA=5,故點(diǎn)D的坐標(biāo)為(﹣5,6),將點(diǎn)A、D的坐標(biāo)代入一次函數(shù)表達(dá)式:y=mx+n得:,解得:即直線AD的表達(dá)式為:y=﹣x+1,(3)設(shè)點(diǎn)E坐標(biāo)為則點(diǎn)M坐標(biāo)為則∵故S△ACE有最大值,當(dāng)x=﹣2時(shí),最大值為;(4)存在,理由:①當(dāng)AP為平行四邊形的一條邊時(shí),如下圖,設(shè)點(diǎn)D的坐標(biāo)為將點(diǎn)A向左平移2個(gè)單位、向上平移4個(gè)單位到達(dá)點(diǎn)P的位置,同樣把點(diǎn)D左平移2個(gè)單位、向上平移4個(gè)單位到達(dá)點(diǎn)Q的位置,則點(diǎn)Q的坐標(biāo)為將點(diǎn)Q的坐標(biāo)代入①式并解得:②當(dāng)AP為平行四邊形的對(duì)角線時(shí),如下圖,設(shè)點(diǎn)Q坐標(biāo)為點(diǎn)D的坐標(biāo)為(m,n),AP中點(diǎn)的坐標(biāo)為(0,2),該點(diǎn)也是DQ的中點(diǎn),則:即:將點(diǎn)D坐標(biāo)代入①式并解得:故點(diǎn)D的橫坐標(biāo)為:或或.【題目點(diǎn)撥】本題考查的是二次函數(shù)綜合運(yùn)用,涉及到圖形平移、平行四邊形的性質(zhì)等,關(guān)鍵是(4)中,用圖形平移的方法求解點(diǎn)的坐標(biāo),本題難度大.22、(1)100;(2)見解析;(3)108°;(4)1250.【解題分析】試題分析:(1)根據(jù)乙班參賽30人,所占比為20%,即可求出這四個(gè)班總?cè)藬?shù);(2)根據(jù)丁班參賽35人,總?cè)藬?shù)是100,即可求出丁班所占的百分比,再用整體1減去其它所占的百分比,即可得出丙所占的百分比,再乘以參賽得總?cè)藬?shù),即可得出丙班參賽得人數(shù),從而補(bǔ)全統(tǒng)計(jì)圖;(3)根據(jù)甲班級(jí)所占的百分比,再乘以360°,即可得出答案;(4)根據(jù)樣本估計(jì)總體,可得答案.試題解析:(1)這四個(gè)班參與大賽的學(xué)生數(shù)是:30÷30%=100(人);故答案為100;(2)丁所占的百分比是:×100%=35%,丙所占的百分比是:1﹣30%﹣20%﹣35%=15%,則丙班得人數(shù)是:100×15%=15(人);如圖:(3)甲班級(jí)所對(duì)應(yīng)的扇形圓心角的度數(shù)是:30%×360°=108°;(4)根據(jù)題意得:2000×=1250(人).答:全校的學(xué)生中參與這次活動(dòng)的大約有1250人.考點(diǎn):條形統(tǒng)計(jì)圖;扇形統(tǒng)計(jì)圖;樣本估計(jì)總體.23、(1)45;(m,﹣m);(2)相似;(3)①;②.【解題分析】試題分析:(1)由B與C的坐標(biāo)求出OB與OC的長(zhǎng),進(jìn)一步表示出BC的長(zhǎng),再證三角形AOB為等腰直角三角形,即可求出所求角的度數(shù);由旋轉(zhuǎn)的性質(zhì)得,即可確定出A′坐標(biāo);(2)△D′O

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論