河北省魏縣第四中學(xué)2024屆中考猜題數(shù)學(xué)試卷含解析_第1頁
河北省魏縣第四中學(xué)2024屆中考猜題數(shù)學(xué)試卷含解析_第2頁
河北省魏縣第四中學(xué)2024屆中考猜題數(shù)學(xué)試卷含解析_第3頁
河北省魏縣第四中學(xué)2024屆中考猜題數(shù)學(xué)試卷含解析_第4頁
河北省魏縣第四中學(xué)2024屆中考猜題數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

河北省魏縣第四中學(xué)2024屆中考猜題數(shù)學(xué)試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.若矩形的長和寬是方程x2-7x+12=0的兩根,則矩形的對角線長度為()A.5 B.7 C.8 D.102.通州區(qū)大運河森林公園占地面積10700畝,是北京規(guī)模最大的濱河森林公園,將10700用科學(xué)記數(shù)法表示為()A.10.7×104 B.1.07×105 C.1.7×104 D.1.07×1043.下列四個式子中,正確的是()A.=±9 B.﹣=6 C.()2=5 D.=44.如圖,矩形中,,,以為圓心,為半徑畫弧,交于點,以為圓心,為半徑畫弧,交于點,則的長為()A.3 B.4 C. D.55.已知x+=3,則x2+=()A.7 B.9 C.11 D.86.“五一”期間,某市共接待海內(nèi)外游客約567000人次,將567000用科學(xué)記數(shù)法表示為()A.567×103B.56.7×104C.5.67×105D.0.567×1067.cos30°的相反數(shù)是()A. B. C. D.8.如圖所示,在矩形ABCD中,AB=6,BC=8,對角線AC、BD相交于點O,過點O作OE垂直AC交AD于點E,則DE的長是()A.5 B. C. D.9.已知一組數(shù)據(jù)a,b,c的平均數(shù)為5,方差為4,那么數(shù)據(jù)a﹣2,b﹣2,c﹣2的平均數(shù)和方差分別是.()A.3,2 B.3,4 C.5,2 D.5,410.如圖,點A所表示的數(shù)的絕對值是()A.3 B.﹣3 C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如果實數(shù)x、y滿足方程組,求代數(shù)式(+2)÷.12.如圖,某景區(qū)的兩個景點A、B處于同一水平地面上、一架無人機(jī)在空中沿MN方向水平飛行進(jìn)行航拍作業(yè),MN與AB在同一鉛直平面內(nèi),當(dāng)無人機(jī)飛行至C處時、測得景點A的俯角為45°,景點B的俯角為30°,此時C到地面的距離CD為100米,則兩景點A、B間的距離為__米(結(jié)果保留根號).13.從﹣2,﹣1,1,2四個數(shù)中,隨機(jī)抽取兩個數(shù)相乘,積為大于﹣4小于2的概率是__.14.若分式a2-9a+315.如圖,已知點A是一次函數(shù)y=x(x≥0)圖象上一點,過點A作x軸的垂線l,B是l上一點(B在A上方),在AB的右側(cè)以AB為斜邊作等腰直角三角形ABC,反比例函數(shù)y=(x>0)的圖象過點B,C,若△OAB的面積為5,則△ABC的面積是________.16.如圖,正比例函數(shù)y=kx與反比例函數(shù)y=的圖象有一個交點A(2,m),AB⊥x軸于點B,平移直線y=kx使其經(jīng)過點B,得到直線l,則直線l對應(yīng)的函數(shù)表達(dá)式是_________.三、解答題(共8題,共72分)17.(8分)如圖所示,一幢樓房AB背后有一臺階CD,臺階每層高0.2米,且AC=17.2米,設(shè)太陽光線與水平地面的夾角為α,當(dāng)α=60°時,測得樓房在地面上的影長AE=10米,現(xiàn)有一老人坐在MN這層臺階上曬太陽.(取1.73)(1)求樓房的高度約為多少米?(2)過了一會兒,當(dāng)α=45°時,問老人能否還曬到太陽?請說明理由.18.(8分)如圖,在矩形ABCD中,AB=3,BC=4,將矩形ABCD繞點C按順時針方向旋轉(zhuǎn)α角,得到矩形A'B'C'D',B'C與AD交于點E,AD的延長線與A'D'交于點F.(1)如圖①,當(dāng)α=60°時,連接DD',求DD'和A'F的長;(2)如圖②,當(dāng)矩形A'B'CD'的頂點A'落在CD的延長線上時,求EF的長;(3)如圖③,當(dāng)AE=EF時,連接AC,CF,求AC?CF的值.19.(8分)如圖,AB為⊙O的直徑,點E在⊙O上,C為的中點,過點C作直線CD⊥AE于D,連接AC、BC.(1)試判斷直線CD與⊙O的位置關(guān)系,并說明理由;(2)若AD=2,AC=,求AB的長.20.(8分)如圖所示,AC=AE,∠1=∠2,AB=AD.求證:BC=DE.21.(8分)已知a2+2a=9,求的值.22.(10分)如圖,AC是⊙O的直徑,BC是⊙O的弦,點P是⊙O外一點,連接PA、PB、AB、OP,已知PB是⊙O的切線.(1)求證:∠PBA=∠C;(2)若OP∥BC,且OP=9,⊙O的半徑為3,求BC的長.23.(12分)某校決定加強羽毛球、籃球、乒乓球、排球、足球五項球類運動,每位同學(xué)必須且只能選擇一項球類運動,對該校學(xué)生隨機(jī)抽取進(jìn)行調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如下不完整的頻數(shù)分布表和扇形統(tǒng)計圖:運動項目

頻數(shù)(人數(shù))

羽毛球

30

籃球

乒乓球

36

排球

足球

12

請根據(jù)以上圖表信息解答下列問題:頻數(shù)分布表中的,;在扇形統(tǒng)計圖中,“排球”所在的扇形的圓心角為度;全校有多少名學(xué)生選擇參加乒乓球運動?24.定義:對于給定的二次函數(shù)y=a(x﹣h)2+k(a≠0),其伴生一次函數(shù)為y=a(x﹣h)+k,例如:二次函數(shù)y=2(x+1)2﹣3的伴生一次函數(shù)為y=2(x+1)﹣3,即y=2x﹣1.(1)已知二次函數(shù)y=(x﹣1)2﹣4,則其伴生一次函數(shù)的表達(dá)式為_____;(2)試說明二次函數(shù)y=(x﹣1)2﹣4的頂點在其伴生一次函數(shù)的圖象上;(3)如圖,二次函數(shù)y=m(x﹣1)2﹣4m(m≠0)的伴生一次函數(shù)的圖象與x軸、y軸分別交于點B、A,且兩函數(shù)圖象的交點的橫坐標(biāo)分別為1和2,在∠AOB內(nèi)部的二次函數(shù)y=m(x﹣1)2﹣4m的圖象上有一動點P,過點P作x軸的平行線與其伴生一次函數(shù)的圖象交于點Q,設(shè)點P的橫坐標(biāo)為n,直接寫出線段PQ的長為時n的值.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解題分析】解:設(shè)矩形的長和寬分別為a、b,則a+b=7,ab=12,所以矩形的對角線長====1.故選A.2、D【解題分析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).【題目詳解】解:10700=1.07×104,

故選:D.【題目點撥】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.3、D【解題分析】

A、表示81的算術(shù)平方根;B、先算-6的平方,然后再求?的值;C、利用完全平方公式計算即可;D、=.【題目詳解】A、=9,故A錯誤;B、-=?=-6,故B錯誤;C、()2=2+2+3=5+2,故C錯誤;D、==4,故D正確.故選D.【題目點撥】本題主要考查的是實數(shù)的運算,掌握算術(shù)平方根、平方根和二次根式的性質(zhì)以及完全平方公式是解題的關(guān)鍵.4、B【解題分析】

連接DF,在中,利用勾股定理求出CF的長度,則EF的長度可求.【題目詳解】連接DF,∵四邊形ABCD是矩形∴在中,故選:B.【題目點撥】本題主要考查勾股定理,掌握勾股定理的內(nèi)容是解題的關(guān)鍵.5、A【解題分析】

根據(jù)完全平方公式即可求出答案.【題目詳解】∵(x+)2=x2+2+∴9=2+x2+,∴x2+=7,故選A.【題目點撥】本題考查完全平方公式,解題的關(guān)鍵是熟練運用完全平方公式.6、C【解題分析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值≥1時,n是非負(fù)數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).【題目詳解】567000=5.67×105,【題目點撥】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.7、C【解題分析】

先將特殊角的三角函數(shù)值代入求解,再求出其相反數(shù).【題目詳解】∵cos30°=,∴cos30°的相反數(shù)是,故選C.【題目點撥】本題考查了特殊角的三角函數(shù)值,解答本題的關(guān)鍵是掌握幾個特殊角的三角函數(shù)值以及相反數(shù)的概念.8、C【解題分析】

先利用勾股定理求出AC的長,然后證明△AEO∽△ACD,根據(jù)相似三角形對應(yīng)邊成比例列式求解即可.【題目詳解】∵AB=6,BC=8,∴AC=10(勾股定理);∴AO=AC=5,∵EO⊥AC,∴∠AOE=∠ADC=90°,∵∠EAO=∠CAD,∴△AEO∽△ACD,∴,即,解得,AE=,∴DE=8﹣=,故選:C.【題目點撥】本題考查了矩形的性質(zhì),勾股定理,相似三角形對應(yīng)邊成比例的性質(zhì),根據(jù)相似三角形對應(yīng)邊成比例列出比例式是解題的關(guān)鍵.9、B【解題分析】試題分析:平均數(shù)為(a?2+b?2+c?2)=(3×5-6)=3;原來的方差:;新的方差:,故選B.考點:平均數(shù);方差.10、A【解題分析】

根據(jù)負(fù)數(shù)的絕對值是其相反數(shù)解答即可.【題目詳解】|-3|=3,故選A.【題目點撥】此題考查絕對值問題,關(guān)鍵是根據(jù)負(fù)數(shù)的絕對值是其相反數(shù)解答.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解題分析】解:原式==xy+2x+2y,方程組:,解得:,當(dāng)x=3,y=﹣1時,原式=﹣3+6﹣2=1.故答案為1.點睛:此題考查了分式的化簡求值,熟練掌握運算法則是解本題的關(guān)鍵.12、100+100【解題分析】【分析】由已知可得∠ACD=∠MCA=45°,∠B=∠NCB=30°,繼而可得∠DCB=60°,從而可得AD=CD=100米,DB=100米,再根據(jù)AB=AD+DB計算即可得.【題目詳解】∵M(jìn)N//AB,∠MCA=45°,∠NCB=30°,∴∠ACD=∠MCA=45°,∠B=∠NCB=30°,∵CD⊥AB,∴∠CDA=∠CDB=90°,∠DCB=60°,∵CD=100米,∴AD=CD=100米,DB=CD?tan60°=CD=100米,∴AB=AD+DB=100+100(米),故答案為:100+100.【題目點撥】本題考查了解直角三角形的應(yīng)用﹣﹣仰角俯角問題,解題的關(guān)鍵是借助俯角構(gòu)造直角三角形并解直角三角形.注意方程思想與數(shù)形結(jié)合思想的應(yīng)用.13、1【解題分析】

列表得出所有等可能結(jié)果,從中找到積為大于-4小于2的結(jié)果數(shù),根據(jù)概率公式計算可得.【題目詳解】解:列表如下:-2-112-22-2-4-12-1-21-2-122-4-22由表可知,共有12種等可能結(jié)果,其中積為大于-4小于2的有6種結(jié)果,∴積為大于-4小于2的概率為612=1故答案為:12【題目點撥】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.14、1.【解題分析】試題分析:根據(jù)分式的值為0的條件列出關(guān)于a的不等式組,求出a的值即可.試題解析:∵分式a2∴a2解得a=1.考點:分式的值為零的條件.15、【解題分析】

如圖,過C作CD⊥y軸于D,交AB于E.設(shè)AB=2a,則BE=AE=CE=a,再設(shè)A(x,x),則B(x,x+2a)、C(x+a,x+a),再由B、C在反比例函數(shù)的圖象上可得x(x+2a)=(x+a)(x+a),解得x=3a,由△OAB的面積為5求得ax=5,即可得a2=,根據(jù)S△ABC=AB?CE即可求解.【題目詳解】如圖,過C作CD⊥y軸于D,交AB于E.∵AB⊥x軸,∴CD⊥AB,∵△ABC是等腰直角三角形,∴BE=AE=CE,設(shè)AB=2a,則BE=AE=CE=a,設(shè)A(x,x),則B(x,x+2a),C(x+a,x+a),∵B、C在反比例函數(shù)的圖象上,∴x(x+2a)=(x+a)(x+a),解得x=3a,∵S△OAB=AB?DE=?2a?x=5,∴ax=5,∴3a2=5,∴a2=,∴S△ABC=AB?CE=?2a?a=a2=.故答案為:.【題目點撥】本題考查了反比例函數(shù)圖象上點的坐標(biāo)特征、等腰直角三角形的性質(zhì)、三角形面積,熟練掌握反比例函數(shù)上的點符合反比例函數(shù)的關(guān)系式是關(guān)鍵.16、y=x-3【解題分析】【分析】由已知先求出點A、點B的坐標(biāo),繼而求出y=kx的解析式,再根據(jù)直線y=kx平移后經(jīng)過點B,可設(shè)平移后的解析式為y=kx+b,將B點坐標(biāo)代入求解即可得.【題目詳解】當(dāng)x=2時,y==3,∴A(2,3),B(2,0),∵y=kx過點A(2,3),∴3=2k,∴k=,∴y=x,∵直線y=x平移后經(jīng)過點B,∴設(shè)平移后的解析式為y=x+b,則有0=3+b,解得:b=-3,∴平移后的解析式為:y=x-3,故答案為:y=x-3.【題目點撥】本題考查了一次函數(shù)與反比例函數(shù)的綜合應(yīng)用,涉及到待定系數(shù)法,一次函數(shù)圖象的平移等,求出k的值是解題的關(guān)鍵.三、解答題(共8題,共72分)17、(1)樓房的高度約為17.3米;(2)當(dāng)α=45°時,老人仍可以曬到太陽.理由見解析.【解題分析】試題分析:(1)在Rt△ABE中,根據(jù)的正切值即可求得樓高;(2)當(dāng)時,從點B射下的光線與地面AD的交點為F,與MC的交點為點H.可求得AF=AB=17.3米,又因CF=CH=17.3-17.2=0.1米,CM=0.2,所以大樓的影子落在臺階MC這個側(cè)面上.即小貓仍可曬到太陽.試題解析:解:(1)當(dāng)當(dāng)時,在Rt△ABE中,∵,∴BA=10tan60°=米.即樓房的高度約為17.3米.當(dāng)時,小貓仍可曬到太陽.理由如下:假設(shè)沒有臺階,當(dāng)時,從點B射下的光線與地面AD的交點為F,與MC的交點為點H.∵∠BFA=45°,∴,此時的影長AF=BA=17.3米,所以CF=AF-AC=17.3-17.2=0.1.∴CH=CF=0.1米,∴大樓的影子落在臺階MC這個側(cè)面上.∴小貓仍可曬到太陽.考點:解直角三角形.18、(1)DD′=1,A′F=4﹣;(2);(1).【解題分析】

(1)①如圖①中,∵矩形ABCD繞點C按順時針方向旋轉(zhuǎn)α角,得到矩形A'B'C'D',只要證明△CDD′是等邊三角形即可解決問題;②如圖①中,連接CF,在Rt△CD′F中,求出FD′即可解決問題;(2)由△A′DF∽△A′D′C,可推出DF的長,同理可得△CDE∽△CB′A′,可求出DE的長,即可解決問題;(1)如圖③中,作FG⊥CB′于G,由S△ACF=?AC?CF=?AF?CD,把問題轉(zhuǎn)化為求AF?CD,只要證明∠ACF=90°,證明△CAD∽△FAC,即可解決問題;【題目詳解】解:(1)①如圖①中,∵矩形ABCD繞點C按順時針方向旋轉(zhuǎn)α角,得到矩形A'B'C'D',∴A′D′=AD=B′C=BC=4,CD′=CD=A′B′=AB=1∠A′D′C=∠ADC=90°.∵α=60°,∴∠DCD′=60°,∴△CDD′是等邊三角形,∴DD′=CD=1.②如圖①中,連接CF.∵CD=CD′,CF=CF,∠CDF=∠CD′F=90°,∴△CDF≌△CD′F,∴∠DCF=∠D′CF=∠DCD′=10°.在Rt△CD′F中,∵tan∠D′CF=,∴D′F=,∴A′F=A′D′﹣D′F=4﹣.(2)如圖②中,在Rt△A′CD′中,∵∠D′=90°,∴A′C2=A′D′2+CD′2,∴A′C=5,A′D=2.∵∠DA′F=∠CA′D′,∠A′DF=∠D′=90°,∴△A′DF∽△A′D′C,∴,∴,∴DF=.同理可得△CDE∽△CB′A′,∴,∴,∴ED=,∴EF=ED+DF=.(1)如圖③中,作FG⊥CB′于G.∵四邊形A′B′CD′是矩形,∴GF=CD′=CD=1.∵S△CEF=?EF?DC=?CE?FG,∴CE=EF,∵AE=EF,∴AE=EF=CE,∴∠ACF=90°.∵∠ADC=∠ACF,∠CAD=∠FAC,∴△CAD∽△FAC,∴,∴AC2=AD?AF,∴AF=.∵S△ACF=?AC?CF=?AF?CD,∴AC?CF=AF?CD=.19、(1)證明見解析(2)3【解題分析】

(1)連接,由為的中點,得到,等量代換得到,根據(jù)平行線的性質(zhì)得到,即可得到結(jié)論;(2)連接,由勾股定理得到,根據(jù)切割線定理得到,根據(jù)勾股定理得到,由圓周角定理得到,即可得到結(jié)論.【題目詳解】相切,連接,∵為的中點,∴,∵,∴,∴,∴,∵,∴,∴直線與相切;方法:連接,∵,,∵,∴,∵是的切線,∴,∴,∴,∵為的中點,∴,∵為的直徑,∴,∴.方法:∵,易得,∴,∴.【題目點撥】本題考查了直線與圓的位置關(guān)系,切線的判定和性質(zhì),圓周角定理,勾股定理,平行線的性質(zhì),切割線定理,熟練掌握各定理是解題的關(guān)鍵.20、證明見解析.【解題分析】試題分析:由可得則可證明,因此可得試題解析:即,在和中,考點:三角形全等的判定.21、,.【解題分析】試題分析:原式第二項利用除法法則變形,約分后兩項通分并利用同分母分式的減法法則計算得到最簡結(jié)果,把已知等式變形后代入計算即可求出值.試題解析:===,∵a2+2a=9,∴(a+1)2=1.∴原式=.22、(1)證明見解析;(2)BC=1.【解題分析】

(1)連接OB,根據(jù)切線的性質(zhì)和圓周角定理求出∠PBO=∠ABC=90°,即可求出答案;

(2)求出△ABC∽△PBO,得出比例式,代入求出即可.【題目詳解】(1)連接OB,∵PB是⊙O的切線,∴PB⊥OB,∴∠PBA+∠OBA=90°,∵AC是⊙O的直徑,∴∠ABC=90°,∠C+∠BAC=90°,∵OA=OB,∴∠OBA=∠BAO,∴∠PBA=∠C;(2)∵⊙O的半徑是3,∴OB=3,AC=6,∵OP∥BC,∴∠BOP=∠OBC,∵OB=OC,∴∠OBC=∠C,∴∠BOP=∠C,∵∠ABC=∠PBO=90°,∴△ABC∽△PBO,∴=,∴=,∴BC=1.【題目點撥】本題考查平行線的性質(zhì),切線的性質(zhì),相似三角形的性質(zhì)和判定,圓周角定理等知識點,能綜合運用知識點進(jìn)行推理是解題關(guān)鍵.23、(1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論