版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
山東省海陽(yáng)市美寶校2024屆中考考前最后一卷數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.將不等式組的解集在數(shù)軸上表示,下列表示中正確的是()A. B. C. D.2.在平面直角坐標(biāo)系xOy中,將點(diǎn)N(–1,–2)繞點(diǎn)O旋轉(zhuǎn)180°,得到的對(duì)應(yīng)點(diǎn)的坐標(biāo)是()A.(1,2) B.(–1,2)C.(–1,–2) D.(1,–2)3.如圖所示,直線a∥b,∠1=35°,∠2=90°,則∠3的度數(shù)為()A.125° B.135° C.145° D.155°4.分式方程=1的解為()A.x=1 B.x=0 C.x=﹣ D.x=﹣15.等腰中,,D是AC的中點(diǎn),于E,交BA的延長(zhǎng)線于F,若,則的面積為()A.40 B.46 C.48 D.506.已知二次函數(shù)y=ax2+bx+c的圖像經(jīng)過(guò)點(diǎn)(0,m)、(4、m)、(1,n),若n<m,則()A.a(chǎn)>0且4a+b=0 B.a(chǎn)<0且4a+b=0C.a(chǎn)>0且2a+b=0 D.a(chǎn)<0且2a+b=07.如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的一部分,與x軸的交點(diǎn)A在點(diǎn)(2,0)和(3,0)之間,對(duì)稱軸是x=1.對(duì)于下列說(shuō)法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實(shí)數(shù));⑤當(dāng)﹣1<x<3時(shí),y>0,其中正確的是()A.①②④ B.①②⑤ C.②③④ D.③④⑤8.下列各式計(jì)算正確的是()A.a(chǎn)4?a3=a12 B.3a?4a=12a C.(a3)4=a12 D.a(chǎn)12÷a3=a49.如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC,ED垂直平分AB于D,若AC=9,則AE的值是()A. B. C.6 D.410.如圖,在已知的△ABC中,按以下步驟作圖:①分別以B、C為圓心,以大于BC的長(zhǎng)為半徑作弧,兩弧相交于點(diǎn)M、N;②作直線MN交AB于點(diǎn)D,連接CD,則下列結(jié)論正確的是()A.CD+DB=AB B.CD+AD=AB C.CD+AC=AB D.AD+AC=AB二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.在△ABC中,AB=AC,把△ABC折疊,使點(diǎn)B與點(diǎn)A重合,折痕交AB于點(diǎn)M,交BC于點(diǎn)N.如果△CAN是等腰三角形,則∠B的度數(shù)為_(kāi)__________.12.如圖,已知圓柱底面的周長(zhǎng)為,圓柱高為,在圓柱的側(cè)面上,過(guò)點(diǎn)和點(diǎn)嵌有一圈金屬絲,則這圈金屬絲的周長(zhǎng)最小為_(kāi)_____.13.函數(shù)中自變量x的取值范圍是___________.14.分解因式:m3–m=_____.15.關(guān)于的方程有增根,則______.16.如圖,點(diǎn)A,B,C在⊙O上,∠OBC=18°,則∠A=_______________________.三、解答題(共8題,共72分)17.(8分)如圖,已知某水庫(kù)大壩的橫斷面是梯形ABCD,壩頂寬AD是6米,壩高14米,背水坡AB的坡度為1:3,迎水坡CD的坡度為1:1.求:(1)背水坡AB的長(zhǎng)度.(1)壩底BC的長(zhǎng)度.18.(8分)如圖,在△ABC中,D、E分別是邊AB、AC上的點(diǎn),DE∥BC,點(diǎn)F在線段DE上,過(guò)點(diǎn)F作FG∥AB、FH∥AC分別交BC于點(diǎn)G、H,如果BG:GH:HC=2:4:1.求的值.19.(8分)如圖,△ABD是⊙O的內(nèi)接三角形,E是弦BD的中點(diǎn),點(diǎn)C是⊙O外一點(diǎn)且∠DBC=∠A,連接OE延長(zhǎng)與圓相交于點(diǎn)F,與BC相交于點(diǎn)C.求證:BC是⊙O的切線;若⊙O的半徑為6,BC=8,求弦BD的長(zhǎng).20.(8分)先化簡(jiǎn),再求值:,其中,.21.(8分)如圖,四邊形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足為E,求證:AE=CE.22.(10分)某調(diào)查小組采用簡(jiǎn)單隨機(jī)抽樣方法,對(duì)某市部分中小學(xué)生一天中陽(yáng)光體育運(yùn)動(dòng)時(shí)間進(jìn)行了抽樣調(diào)查,并把所得數(shù)據(jù)整理后繪制成如下的統(tǒng)計(jì)圖:(1)該調(diào)查小組抽取的樣本容量是多少?(2)求樣本學(xué)生中陽(yáng)光體育運(yùn)動(dòng)時(shí)間為1.5小時(shí)的人數(shù),并補(bǔ)全占頻數(shù)分布直方圖;(3)請(qǐng)估計(jì)該市中小學(xué)生一天中陽(yáng)光體育運(yùn)動(dòng)的平均時(shí)間.23.(12分)如圖1,將兩個(gè)完全相同的三角形紙片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.操作發(fā)現(xiàn)如圖1,固定△ABC,使△DEC繞點(diǎn)C旋轉(zhuǎn).當(dāng)點(diǎn)D恰好落在BC邊上時(shí),填空:線段DE與AC的位置關(guān)系是;②設(shè)△BDC的面積為S1,△AEC的面積為S1.則S1與S1的數(shù)量關(guān)系是.猜想論證當(dāng)△DEC繞點(diǎn)C旋轉(zhuǎn)到圖3所示的位置時(shí),小明猜想(1)中S1與S1的數(shù)量關(guān)系仍然成立,并嘗試分別作出了△BDC和△AEC中BC,CE邊上的高,請(qǐng)你證明小明的猜想.拓展探究已知∠ABC=60°,點(diǎn)D是其角平分線上一點(diǎn),BD=CD=4,OE∥AB交BC于點(diǎn)E(如圖4),若在射線BA上存在點(diǎn)F,使S△DCF=S△BDC,請(qǐng)直接寫出相應(yīng)的BF的長(zhǎng)24.學(xué)校決定在學(xué)生中開(kāi)設(shè):A、實(shí)心球;B、立定跳遠(yuǎn);C、跳繩;D、跑步四種活動(dòng)項(xiàng)目.為了了解學(xué)生對(duì)四種項(xiàng)目的喜歡情況,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如圖①②的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中的信息解答下列問(wèn)題:(1)在這項(xiàng)調(diào)查中,共調(diào)查了多少名學(xué)生?(2)請(qǐng)計(jì)算本項(xiàng)調(diào)查中喜歡“立定跳遠(yuǎn)”的學(xué)生人數(shù)和所占百分比,并將兩個(gè)統(tǒng)計(jì)圖補(bǔ)充完整.(3)若調(diào)查到喜歡“跳繩”的5名學(xué)生中有2名男生,3名女生,現(xiàn)從這5名學(xué)生中任意抽取2名學(xué)生,請(qǐng)用畫樹(shù)狀圖或列表法求出剛好抽到不同性別學(xué)生的概率.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解題分析】先解不等式組中的每一個(gè)不等式,再把不等式的解集表示在數(shù)軸上即可.解:不等式可化為:,即.
∴在數(shù)軸上可表示為.故選B.“點(diǎn)睛”不等式組的解集在數(shù)軸上表示的方法:把每個(gè)不等式的解集在數(shù)軸上表示出來(lái)(>,≥向右畫;<,≤向左畫),在表示解集時(shí)“≥”,“≤”要用實(shí)心圓點(diǎn)表示;“<”,“>”要用空心圓點(diǎn)表示.2、A【解題分析】
根據(jù)點(diǎn)N(–1,–2)繞點(diǎn)O旋轉(zhuǎn)180°,所得到的對(duì)應(yīng)點(diǎn)與點(diǎn)N關(guān)于原點(diǎn)中心對(duì)稱求解即可.【題目詳解】∵將點(diǎn)N(–1,–2)繞點(diǎn)O旋轉(zhuǎn)180°,∴得到的對(duì)應(yīng)點(diǎn)與點(diǎn)N關(guān)于原點(diǎn)中心對(duì)稱,∵點(diǎn)N(–1,–2),∴得到的對(duì)應(yīng)點(diǎn)的坐標(biāo)是(1,2).故選A.【題目點(diǎn)撥】本題考查了旋轉(zhuǎn)的性質(zhì),由旋轉(zhuǎn)的性質(zhì)得到的對(duì)應(yīng)點(diǎn)與點(diǎn)N關(guān)于原點(diǎn)中心對(duì)稱是解答本題的關(guān)鍵.3、A【解題分析】分析:如圖求出∠5即可解決問(wèn)題.詳解:∵a∥b,∴∠1=∠4=35°,∵∠2=90°,∴∠4+∠5=90°,∴∠5=55°,∴∠3=180°-∠5=125°,故選:A.點(diǎn)睛:本題考查平行線的性質(zhì)、三角形內(nèi)角和定理,鄰補(bǔ)角的性質(zhì)等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題.4、C【解題分析】
首先找出分式的最簡(jiǎn)公分母,進(jìn)而去分母,再解分式方程即可.【題目詳解】解:去分母得:x2-x-1=(x+1)2,整理得:-3x-2=0,解得:x=-,檢驗(yàn):當(dāng)x=-時(shí),(x+1)2≠0,故x=-是原方程的根.故選C.【題目點(diǎn)撥】此題主要考查了解分式方程的解法,正確掌握解題方法是解題關(guān)鍵.5、C【解題分析】∵CE⊥BD,∴∠BEF=90°,∵∠BAC=90°,∴∠CAF=90°,∴∠FAC=∠BAD=90°,∠ABD+∠F=90°,∠ACF+∠F=90°,∴∠ABD=∠ACF,又∵AB=AC,∴△ABD≌△ACF,∴AD=AF,∵AB=AC,D為AC中點(diǎn),∴AB=AC=2AD=2AF,∵BF=AB+AF=12,∴3AF=12,∴AF=4,∴AB=AC=2AF=8,∴S△FBC=×BF×AC=×12×8=48,故選C.6、A【解題分析】
由圖像經(jīng)過(guò)點(diǎn)(0,m)、(4、m)可知對(duì)稱軸為x=2,由n<m知x=1時(shí),y的值小于x=0時(shí)y的值,根據(jù)拋物線的對(duì)稱性可知開(kāi)口方向,即可知道a的取值.【題目詳解】∵圖像經(jīng)過(guò)點(diǎn)(0,m)、(4、m)∴對(duì)稱軸為x=2,則,∴4a+b=0∵圖像經(jīng)過(guò)點(diǎn)(1,n),且n<m∴拋物線的開(kāi)口方向向上,∴a>0,故選A.【題目點(diǎn)撥】此題主要考查拋物線的圖像,解題的關(guān)鍵是熟知拋物線的對(duì)稱性.7、A【解題分析】
由拋物線的開(kāi)口方向判斷a與2的關(guān)系,由拋物線與y軸的交點(diǎn)判斷c與2的關(guān)系,然后根據(jù)對(duì)稱軸判定b與2的關(guān)系以及2a+b=2;當(dāng)x=﹣1時(shí),y=a﹣b+c;然后由圖象確定當(dāng)x取何值時(shí),y>2.【題目詳解】①∵對(duì)稱軸在y軸右側(cè),∴a、b異號(hào),∴ab<2,故正確;②∵對(duì)稱軸∴2a+b=2;故正確;③∵2a+b=2,∴b=﹣2a,∵當(dāng)x=﹣1時(shí),y=a﹣b+c<2,∴a﹣(﹣2a)+c=3a+c<2,故錯(cuò)誤;④根據(jù)圖示知,當(dāng)m=1時(shí),有最大值;當(dāng)m≠1時(shí),有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m為實(shí)數(shù)).故正確.⑤如圖,當(dāng)﹣1<x<3時(shí),y不只是大于2.故錯(cuò)誤.故選A.【題目點(diǎn)撥】本題主要考查了二次函數(shù)圖象與系數(shù)的關(guān)系,關(guān)鍵是熟練掌握①二次項(xiàng)系數(shù)a決定拋物線的開(kāi)口方向,當(dāng)a>2時(shí),拋物線向上開(kāi)口;當(dāng)a<2時(shí),拋物線向下開(kāi)口;②一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置:當(dāng)a與b同號(hào)時(shí)(即ab>2),對(duì)稱軸在y軸左;當(dāng)a與b異號(hào)時(shí)(即ab<2),對(duì)稱軸在y軸右.(簡(jiǎn)稱:左同右異)③常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn),拋物線與y軸交于(2,c).8、C【解題分析】
根據(jù)同底數(shù)冪的乘法,可判斷A、B,根據(jù)冪的乘方,可判斷C,根據(jù)同底數(shù)冪的除法,可判斷D.【題目詳解】A.a(chǎn)4?a3=a7,故A錯(cuò)誤;B.3a?4a=12a2,故B錯(cuò)誤;C.(a3)4=a12,故C正確;D.a(chǎn)12÷a3=a9,故D錯(cuò)誤.故選C.【題目點(diǎn)撥】本題考查了同底數(shù)冪的除法,同底數(shù)冪的除法底數(shù)不變指數(shù)相減是解題的關(guān)鍵.9、C【解題分析】
由角平分線的定義得到∠CBE=∠ABE,再根據(jù)線段的垂直平分線的性質(zhì)得到EA=EB,則∠A=∠ABE,可得∠CBE=30°,根據(jù)含30度的直角三角形三邊的關(guān)系得到BE=2EC,即AE=2EC,由AE+EC=AC=9,即可求出AC.【題目詳解】解:∵BE平分∠ABC,∴∠CBE=∠ABE,∵ED垂直平分AB于D,∴EA=EB,∴∠A=∠ABE,∴∠CBE=30°,∴BE=2EC,即AE=2EC,而AE+EC=AC=9,∴AE=1.故選C.10、B【解題分析】
作弧后可知MN⊥CB,且CD=DB.【題目詳解】由題意性質(zhì)可知MN是BC的垂直平分線,則MN⊥CB,且CD=DB,則CD+AD=AB.【題目點(diǎn)撥】了解中垂線的作圖規(guī)則是解題的關(guān)鍵.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、或.【解題分析】
MN是AB的中垂線,則△ABN是等腰三角形,且NA=NB,即可得到∠B=∠BAN=∠C.然后對(duì)△ANC中的邊進(jìn)行討論,然后在△ABC中,利用三角形內(nèi)角和定理即可求得∠B的度數(shù).解:∵把△ABC折疊,使點(diǎn)B與點(diǎn)A重合,折痕交AB于點(diǎn)M,交BC于點(diǎn)N,∴MN是AB的中垂線.∴NB=NA.∴∠B=∠BAN,∵AB=AC∴∠B=∠C.設(shè)∠B=x°,則∠C=∠BAN=x°.1)當(dāng)AN=NC時(shí),∠CAN=∠C=x°.則在△ABC中,根據(jù)三角形內(nèi)角和定理可得:4x=180,解得:x=45°則∠B=45°;2)當(dāng)AN=AC時(shí),∠ANC=∠C=x°,而∠ANC=∠B+∠BAN,故此時(shí)不成立;3)當(dāng)CA=CN時(shí),∠NAC=∠ANC=.在△ABC中,根據(jù)三角形內(nèi)角和定理得到:x+x+x+=180,解得:x=36°.故∠B的度數(shù)為45°或36°.12、【解題分析】
要求絲線的長(zhǎng),需將圓柱的側(cè)面展開(kāi),進(jìn)而根據(jù)“兩點(diǎn)之間線段最短”得出結(jié)果,在求線段長(zhǎng)時(shí),根據(jù)勾股定理計(jì)算即可.【題目詳解】解:如圖,把圓柱的側(cè)面展開(kāi),得到矩形,則這圈金屬絲的周長(zhǎng)最小為2AC的長(zhǎng)度.
∵圓柱底面的周長(zhǎng)為4dm,圓柱高為2dm,
∴AB=2dm,BC=BC′=2dm,
∴AC2=22+22=8,
∴AC=2dm.
∴這圈金屬絲的周長(zhǎng)最小為2AC=4dm.
故答案為:4dm【題目點(diǎn)撥】本題考查了平面展開(kāi)-最短路徑問(wèn)題,圓柱的側(cè)面展開(kāi)圖是一個(gè)矩形,此矩形的長(zhǎng)等于圓柱底面周長(zhǎng),高等于圓柱的高,本題把圓柱的側(cè)面展開(kāi)成矩形,“化曲面為平面”是解題的關(guān)鍵.13、x≤2【解題分析】試題解析:根據(jù)題意得:解得:.14、m(m+1)(m-1)【解題分析】
根據(jù)因式分解的一般步驟:一提(公因式)、二套(平方差公式,完全平方公式)、三檢查(徹底分解),可以先提公因式,再利用平方差完成因式分解【題目詳解】解:故答案為:m(m+1)(m-1).【題目點(diǎn)撥】本題考查因式分解,掌握因式分解的技巧是解題關(guān)鍵.15、-1【解題分析】根據(jù)分式方程-1=0有增根,可知x-1=0,解得x=1,然后把分式方程化為整式方程為:ax+1-(x-1)=0,代入x=1可求得a=-1.故答案為-1.點(diǎn)睛:此題主要考查了分式方程的增根問(wèn)題,解題關(guān)鍵是明確增根出現(xiàn)的原因,把增根代入最簡(jiǎn)公分母即可求得增根,然后把它代入所化為的整式方程即可求出未知系數(shù).16、72°.【解題分析】
解:∵OB=OC,∠OBC=18°,∴∠BCO=∠OBC=18°,∴∠BOC=180°﹣2∠OBC=180°﹣2×18°=144°,∴∠A=∠BOC=×144°=72°.故答案為72°.【題目點(diǎn)撥】本題考查圓周角定理,掌握同弧所對(duì)的圓周角是圓心角的一半是本題的解題關(guān)鍵.三、解答題(共8題,共72分)17、(1)背水坡的長(zhǎng)度為米;(1)壩底的長(zhǎng)度為116米.【解題分析】
(1)分別過(guò)點(diǎn)、作,垂足分別為點(diǎn)、,結(jié)合題意求得AM,MN,在中,得BM,再利用勾股定理即可.(1)在中,求得CN即可得到BC.【題目詳解】(1)分別過(guò)點(diǎn)、作,垂足分別為點(diǎn)、,根據(jù)題意,可知(米),(米)在中∵,∴(米),∵,∴(米).答:背水坡的長(zhǎng)度為米.(1)在中,,∴(米),∴(米)答:壩底的長(zhǎng)度為116米.【題目點(diǎn)撥】本題考查的知識(shí)點(diǎn)是解直角三角形的應(yīng)用-坡度坡角問(wèn)題,解題的關(guān)鍵是熟練的掌握解直角三角形的應(yīng)用-坡度坡角問(wèn)題.18、【解題分析】
先根據(jù)平行線的性質(zhì)證明△ADE∽△FGH,再由線段DF=BG、FE=HC及BG︰GH︰HC=2︰4︰1,可求得的值.【題目詳解】解:∵DE∥BC,∴∠ADE=∠B,∵FG∥AB,∴∠FGH=∠B,∴∠ADE=∠FGH,同理:∠AED=∠FHG,∴△ADE∽△FGH,∴,∵DE∥BC,F(xiàn)G∥AB,∴DF=BG,同理:FE=HC,∵BG︰GH︰HC=2︰4︰1,∴設(shè)BG=2k,GH=4k,HC=1k,∴DF=2k,F(xiàn)E=1k,∴DE=5k,∴.【題目點(diǎn)撥】本題考查了平行線的性質(zhì)和三角形相似的判定和相似比.19、(1)詳見(jiàn)解析;(2)BD=9.6.【解題分析】試題分析:(1)連接OB,由垂徑定理可得BE=DE,OE⊥BD,,再由圓周角定理可得,從而得到∠OBE+∠DBC=90°,即,命題得證.(2)由勾股定理求出OC,再由△OBC的面積求出BE,即可得出弦BD的長(zhǎng).試題解析:(1)證明:如下圖所示,連接OB.∵E是弦BD的中點(diǎn),∴BE=DE,OE⊥BD,,∴∠BOE=∠A,∠OBE+∠BOE=90°.∵∠DBC=∠A,∴∠BOE=∠DBC,∴∠OBE+∠DBC=90°,∴∠OBC=90°,即BC⊥OB,∴BC是⊙O的切線.(2)解:∵OB=6,BC=8,BC⊥OB,∴,∵,∴,∴.點(diǎn)睛:本題主要考查圓中的計(jì)算問(wèn)題,解題的關(guān)鍵在于清楚角度的轉(zhuǎn)換方式和弦長(zhǎng)的計(jì)算方法.20、9【解題分析】
根據(jù)完全平方公式、平方差公式、單項(xiàng)式乘多項(xiàng)式可以化簡(jiǎn)題目中的式子,然后將x、y的值代入化簡(jiǎn)后的式子即可解答本題.【題目詳解】當(dāng),時(shí),原式【題目點(diǎn)撥】本題考查整式的化簡(jiǎn)求值,解答本題的關(guān)鍵是明確整式化簡(jiǎn)求值的方法.21、證明見(jiàn)解析.【解題分析】
過(guò)點(diǎn)B作BF⊥CE于F,根據(jù)同角的余角相等求出∠BCF=∠D,再利用“角角邊”證明△BCF和△CDE全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得BF=CE,再證明四邊形AEFB是矩形,根據(jù)矩形的對(duì)邊相等可得AE=BF,從而得證.【題目詳解】證明:如圖,過(guò)點(diǎn)B作BF⊥CE于F,∵CE⊥AD,∴∠D+∠DCE=90°,∵∠BCD=90°,∴∠BCF+∠DCE=90°∴∠BCF=∠D,在△BCF和△CDE中,∴△BCF≌△CDE(AAS),∴BF=CE,又∵∠A=90°,CE⊥AD,BF⊥CE,∴四邊形AEFB是矩形,∴AE=BF,∴AE=CE.22、(4)500;(4)440,作圖見(jiàn)試題解析;(4)4.4.【解題分析】
(4)利用0.5小時(shí)的人數(shù)除以其所占比例,即可求出樣本容量;(4)利用樣本容量乘以4.5小時(shí)的百分?jǐn)?shù),即可求出4.5小時(shí)的人數(shù),畫圖即可;(4)計(jì)算出該市中小學(xué)生一天中陽(yáng)光體育運(yùn)動(dòng)的平均時(shí)間即可.【題目詳解】解:(4)由題意可得:0.5小時(shí)的人數(shù)為:400人,所占比例為:40%,∴本次調(diào)查共抽樣了500名學(xué)生;(4)4.5小時(shí)的人數(shù)為:500×4.4=440(人),如圖所示:(4)根據(jù)題意得:=4.4,即該市中小學(xué)生一天中陽(yáng)光體育運(yùn)動(dòng)的平均時(shí)間為4.4小時(shí).考點(diǎn):4.頻數(shù)(率)分布直方圖;4.扇形統(tǒng)計(jì)圖;4.加權(quán)平均數(shù).23、解:(1)①DE∥AC.②.(1)仍然成立,證明見(jiàn)解析;(3)3或2.【解題分析】
(1)①由旋轉(zhuǎn)可知:AC=DC,∵∠C=90°,∠B=∠DCE=30°,∴∠DAC=∠CDE=20°.∴△ADC是等邊三角形.∴∠DCA=20°.∴∠DCA=∠CDE=20°.∴DE∥AC.②過(guò)D作DN⊥AC交AC于點(diǎn)N,過(guò)E作EM⊥AC交AC延長(zhǎng)線于M,過(guò)C作CF⊥AB交AB于點(diǎn)F.由①可知:△ADC是等邊三角形,DE∥AC,∴DN=CF,DN=EM.∴CF=EM.∵∠C=90°,∠B=30°∴AB=1AC.又∵AD=AC∴BD=AC.∵∴.(1)如圖,過(guò)點(diǎn)D作DM⊥BC于M,過(guò)點(diǎn)A作AN⊥CE交EC的延長(zhǎng)線于N,
∵△DEC是由△ABC繞點(diǎn)C旋轉(zhuǎn)得到,
∴BC=CE,AC=CD,
∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,
∴∠ACN=∠DCM,
∵在△ACN和△DCM中,,
∴△ACN≌△DCM(AAS),
∴AN=DM,
∴△BDC的面積和△AEC的面積相等(等底等高的三角形的面積相等),
即S1=S1;(3)如圖,過(guò)點(diǎn)D作DF1∥BE,易求四邊形BEDF1是菱形,
所以BE=DF1,且
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 制造業(yè)高層管理聘用合同范本
- 超市冷鏈系統(tǒng)管道協(xié)議
- 臨時(shí)焊工聘用合同樣本
- 高速公路電力系統(tǒng)施工合同
- 市政排水工程土方開(kāi)挖施工合同
- 2025軟件開(kāi)發(fā)合同書范本
- 2025合同示范文本(新)
- 2025農(nóng)村個(gè)人房屋轉(zhuǎn)讓合同
- 2025水電施工勞務(wù)合同
- 2024年電子競(jìng)技賽事新媒體合作合同3篇
- 道路運(yùn)輸企業(yè)安全生產(chǎn)管理人員安全考核試題題庫(kù)與答案
- 護(hù)理質(zhì)控輸液查對(duì)制度
- 年終抖音運(yùn)營(yíng)述職報(bào)告
- 期末教師會(huì)議德育副校長(zhǎng)講話:德育需要奉獻(xiàn)
- 腦梗死患者的護(hù)理常規(guī)
- 2024年人教版初二地理上冊(cè)期末考試卷(附答案)
- 兒童文學(xué)解讀導(dǎo)論智慧樹(shù)知到期末考試答案章節(jié)答案2024年嘉興大學(xué)
- AQ6111-2023個(gè)體防護(hù)裝備安全管理規(guī)范
- 江蘇小高考計(jì)算機(jī)考試題目及答案
- 2023版押品考試題庫(kù)必考點(diǎn)含答案
- 2023版押品考試題庫(kù)必考點(diǎn)含答案
評(píng)論
0/150
提交評(píng)論