![2023-2024學(xué)年上海市徐匯區(qū)上海師大附中高一數(shù)學(xué)第一學(xué)期期末考試試題含解析_第1頁](http://file4.renrendoc.com/view10/M03/31/00/wKhkGWVz6imAJQ3sAAG7jfeQF7k542.jpg)
![2023-2024學(xué)年上海市徐匯區(qū)上海師大附中高一數(shù)學(xué)第一學(xué)期期末考試試題含解析_第2頁](http://file4.renrendoc.com/view10/M03/31/00/wKhkGWVz6imAJQ3sAAG7jfeQF7k5422.jpg)
![2023-2024學(xué)年上海市徐匯區(qū)上海師大附中高一數(shù)學(xué)第一學(xué)期期末考試試題含解析_第3頁](http://file4.renrendoc.com/view10/M03/31/00/wKhkGWVz6imAJQ3sAAG7jfeQF7k5423.jpg)
![2023-2024學(xué)年上海市徐匯區(qū)上海師大附中高一數(shù)學(xué)第一學(xué)期期末考試試題含解析_第4頁](http://file4.renrendoc.com/view10/M03/31/00/wKhkGWVz6imAJQ3sAAG7jfeQF7k5424.jpg)
![2023-2024學(xué)年上海市徐匯區(qū)上海師大附中高一數(shù)學(xué)第一學(xué)期期末考試試題含解析_第5頁](http://file4.renrendoc.com/view10/M03/31/00/wKhkGWVz6imAJQ3sAAG7jfeQF7k5425.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年上海市徐匯區(qū)上海師大附中高一數(shù)學(xué)第一學(xué)期期末考試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知f(x)、g(x)均為[﹣1,3]上連續(xù)不斷的曲線,根據(jù)下表能判斷方程f(x)=g(x)有實數(shù)解的區(qū)間是()x﹣10123f(x)﹣06773.0115.4325.9807.651g(x)﹣0.5303.4514.8905.2416.892A.(﹣1,0) B.(1,2)C.(0,1) D.(2,3)2.“不等式在上恒成立”的一個必要不充分條件是()A. B.C. D.3.下列各角中與角終邊相同的角是()A.-300° B.-60°C.600° D.1380°4.函數(shù)在區(qū)間上的最大值為A.1 B.4C.-1 D.不存在5.若都是銳角,且,,則的值是A. B.C. D.6.為空間中不重合的兩條直線,為空間中不重合的兩個平面,則①若;②;③;④上述說法正確的是A.①③ B.②③C.①② D.③④7.函數(shù)的零點個數(shù)為()A.個 B.個C.個 D.個8.設(shè),則()A. B.C. D.9.高斯是德國著名的數(shù)學(xué)家,近代數(shù)學(xué)奠基者之一,享有數(shù)學(xué)王子的美譽,他和阿基米德、牛頓并列為世界三大數(shù)學(xué)家,用其姓名命名的“高斯函數(shù)”為,其中表示不超過的最大整數(shù),例如,已知函數(shù),令函數(shù),則的值域為()A.B.C.D.10.若,則A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)f(x)=(a>0,a≠1)是偶函數(shù),則a=_________,則f(x)的最大值為________.12.如圖,圓錐的底面圓直徑AB為2,母線長SA為4,若小蟲P從點A開始繞著圓錐表面爬行一圈到SA的中點C,則小蟲爬行的最短距離為________13.如圖所示,正方體的棱長為1,B′C∩BC′=O,則AO與A′C′所成角的度數(shù)為________.14.我國采用的“密位制”是6000密位制,即將一個圓周分為6000等份,每一個等份是一個密位,那么120密位等于______rad15.已知函數(shù)的零點為,不等式的最小整數(shù)解為,則__________16.已知非零向量、滿足,,在方向上的投影為,則_______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)為偶函數(shù).(1)判斷在上的單調(diào)性并證明;(2)求函數(shù)在上的最小值.18.已知函數(shù)滿足(1)求的解析式,并求在上的值域;(2)若對,且,都有成立,求實數(shù)k的取值范圍19.近年來,國家大力推動職業(yè)教育發(fā)展,職業(yè)教育體系不斷完善,人才培養(yǎng)專業(yè)結(jié)構(gòu)更加符合市場需求.一批職業(yè)培訓(xùn)學(xué)校以市場為主導(dǎo),積極參與職業(yè)教育的改革和創(chuàng)新.某職業(yè)培訓(xùn)學(xué)校共開設(shè)了六個專業(yè),根據(jù)前若干年的統(tǒng)計數(shù)據(jù),學(xué)校統(tǒng)計了各專業(yè)每年的就業(yè)率(直接就業(yè)的學(xué)生人數(shù)與招生人數(shù)的比值)和每年各專業(yè)的招生人數(shù),具體統(tǒng)計數(shù)據(jù)如下表:專業(yè)機(jī)電維修車內(nèi)美容衣物翻新美容美發(fā)泛藝術(shù)類電腦技術(shù)招生人數(shù)就業(yè)率(1)從該校已畢業(yè)的學(xué)生中隨機(jī)抽取人,求該生是“衣物翻新”專業(yè)且直接就業(yè)的概率;(2)為適應(yīng)市場對人才需求的變化,該校決定從明年起,將“電腦技術(shù)”專業(yè)的招生人數(shù)減少人,將“機(jī)電維修”專業(yè)的招生人數(shù)增加人,假設(shè)“電腦技術(shù)”專業(yè)的直接就業(yè)人數(shù)不變,“機(jī)電維修”專業(yè)的就業(yè)率不變,其他專業(yè)的招生人數(shù)和就業(yè)率都不變,要使招生人數(shù)調(diào)整后全校整體的就業(yè)率比往年提高個百分點,求的值20.已知函數(shù),只能同時滿足下列三個條件中的兩個:①的解集為;②;③最小值為(1)請寫出這兩個條件的序號,求的解析式;(2)求關(guān)于的不等式的解集.21.已知函數(shù)的圖象過點,且相鄰的兩個零點之差的絕對值為6(1)求的解析式;(2)將的圖象向右平移3個單位后得到函數(shù)的圖象若關(guān)于x的方程在上有解,求實數(shù)a的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】設(shè)h(x)=f(x)﹣g(x),利用h(0)=f(0)﹣g(0)=﹣0.44<0,h(1)=f(1)﹣g(1)=0.542>0,即可得出結(jié)論.【詳解】設(shè)h(x)=f(x)﹣g(x),則h(0)=f(0)﹣g(0)=﹣0.44<0,h(1)=f(1)﹣g(1)=0.542>0,∴h(x)的零點在區(qū)間(0,1),故選:C.【點睛】思路點睛:該題考查的是有關(guān)零點存在性定理的應(yīng)用問題,解題思路如下:(1)先構(gòu)造函數(shù)h(x)=f(x)﹣g(x);(2)利用題中所給的有關(guān)函數(shù)值,得到h(0)=﹣0.44<0,h(1)=0.542>0;(3)利用零點存在性定理,得到結(jié)果.2、C【解析】先計算已知條件的等價范圍,再利用充分條件和必要條件的定義逐一判斷即可.【詳解】因為“不等式在上恒成立”,所以當(dāng)時,原不等式為在上不是恒成立的,所以,所以“不等式在上恒成立”,等價于,解得.A選項是充要條件,不成立;B選項中,不可推導(dǎo)出,B不成立;C選項中,可推導(dǎo),且不可推導(dǎo),故是的必要不充分條件,正確;D選項中,可推導(dǎo),且不可推導(dǎo),故是的充分不必要條件,D不正確.故選:C.【點睛】結(jié)論點睛:本題考查充分不必要條件的判斷,一般可根據(jù)如下規(guī)則判斷:(1)若是的必要不充分條件,則對應(yīng)集合是對應(yīng)集合的真子集;(2)是充分不必要條件,則對應(yīng)集合是對應(yīng)集合的真子集;(3)是的充分必要條件,則對應(yīng)集合與對應(yīng)集合相等;(4)是的既不充分又不必要條件,對的集合與對應(yīng)集合互不包含3、A【解析】與角終邊相同的角為:.當(dāng)時,即為-300°.故選A4、C【解析】根據(jù)題干知,可畫出函數(shù)圖像,是開口向下的以y軸為對稱軸的二次函數(shù),在上單調(diào)遞減,故最大值在1處取得得到-1.故答案為C5、A【解析】由已知得,,故選A.考點:兩角和的正弦公式6、A【解析】由線面垂直的性質(zhì)定理知①正確;②中直線可能在平面內(nèi),故②錯誤;,則內(nèi)一定有直線//,,則有,所以,③正確;④中可能平行,相交,異面,故④錯誤,故選A7、C【解析】根據(jù)給定條件直接解方程即可判斷作答.詳解】由得:,即,解得,即,所以函數(shù)的零點個數(shù)為2.故選:C8、D【解析】由,則,再由指數(shù)、對數(shù)函數(shù)的單調(diào)性得出大小,得出答案.【詳解】由,則,,所以故選:D9、C【解析】先進(jìn)行分離,然后結(jié)合指數(shù)函數(shù)與反比例函數(shù)性質(zhì)求出的值域,結(jié)合已知定義即可求解【詳解】解:因為,所以,所以,則的值域故選:C10、D【解析】利用同角三角函數(shù)的基本關(guān)系,二倍角的余弦公式把要求的式子化為,把已知條件代入運算,求得結(jié)果.【詳解】,,故選D.【點睛】本題主要考查同角三角函數(shù)的基本關(guān)系,二倍角的余弦公式的應(yīng)用,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、①.②.【解析】根據(jù)偶函數(shù)f(-x)=f(x)即可求a值;分離常數(shù),根據(jù)單調(diào)性即可求最大值,或利用基本不等式求最值.【詳解】是偶函數(shù),,則,則,即,則,則,則,當(dāng)且僅當(dāng),即,則時取等號,即的最大值為,故答案為:,12、2.【解析】分析:要求小蟲爬行的最短距離,需將圓錐的側(cè)面展開,進(jìn)而根據(jù)“兩點之間線段最短”得出結(jié)果詳解:由題意知底面圓的直徑AB=2,故底面周長等于2π.設(shè)圓錐的側(cè)面展開后的扇形圓心角為n°,根據(jù)底面周長等于展開后扇形的弧長得2π=,解得n=90,所以展開圖中∠PSC=90°,根據(jù)勾股定理求得PC=2,所以小蟲爬行的最短距離為2.故答案為2點睛:圓錐的側(cè)面展開圖是一個扇形,此扇形的弧長等于圓錐底面周長,扇形的半徑等于圓錐的母線長.本題就是把圓錐的側(cè)面展開成扇形,“化曲面為平面”,用勾股定理解決三、13、30°【解析】∵A′C′∥AC,∴AO與A′C′所成的角就是∠OAC(或其補角).∵OC?平面BB′C′C,AB⊥平面BB′C′C,∴OC⊥AB.又OC⊥OB,AB∩BO=B,∴OC⊥平面ABO.又AO?平面ABO,∴OC⊥OA.在Rt△AOC中,,∴∠OAC=30°.即AO與A′C′所成角度數(shù)為30°.點睛:平移線段法是求異面直線所成角的常用方法,其基本思路是通過平移直線,把異面問題化歸為共面問題來解決,具體步驟如下:①平移:平移異面直線中的一條或兩條,作出異面直線所成的角;②認(rèn)定:證明作出的角就是所求異面直線所成的角;③計算:求該角的值,常利用解三角形;④取舍:由異面直線所成的角的取值范圍是,當(dāng)所作的角為鈍角時,應(yīng)取它的補角作為兩條異面直線所成的角14、##【解析】根據(jù)已知定義,結(jié)合弧度制的定義進(jìn)行求解即可.【詳解】設(shè)120密位等于,所以有,故答案為:15、8【解析】利用單調(diào)性和零點存在定理可知,由此確定的范圍,進(jìn)而得到.【詳解】函數(shù)為上的增函數(shù),,,函數(shù)的零點滿足,,的最小整數(shù)解故答案為:.16、【解析】利用向量數(shù)量積的幾何意義得出,在等式兩邊平方可求出的值,然后利用平面向量數(shù)量積的運算律可計算出的值.【詳解】,在方向上的投影為,,,則,可得,因此,.故答案:.【點睛】本題考查平面向量數(shù)量積計算,涉及利用向量的模求數(shù)量積,同時也考查了向量數(shù)量積幾何意義的應(yīng)用,考查計算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)在上單調(diào)遞增,證明見解析(2)【解析】(1)先利用函數(shù)的奇偶性求得,然后利用單調(diào)性的定義證得,從而證得在上遞增.(2)利用換元法化簡,對進(jìn)行分類討論,結(jié)合二次函數(shù)的性質(zhì)求得在上的最小值.【小問1詳解】為偶函數(shù),,即,,則.所以.在為增函數(shù),證明如下:任取,,且,,,,,.即,在上單調(diào)遞增.【小問2詳解】,令,結(jié)合題意及(1)的結(jié)論可知.,.①當(dāng)時,;②當(dāng)時,;③當(dāng)時,.綜上,.18、(1),(2)【解析】(1)由條件可得,然后可解出,然后利用對勾函數(shù)的知識可得答案;(2)設(shè),條件中的不等式可變形為,即可得在區(qū)間(2,4)遞增,然后分、、三種情況討論求解即可.【小問1詳解】因為①,所以②,聯(lián)立①②解得.當(dāng)時為增函數(shù),時為減函數(shù),因為所以【小問2詳解】對,,,都有,不妨設(shè),則由恒成立,也即可得函數(shù)在區(qū)間(2,4)遞增;當(dāng),即時,滿足題意;當(dāng),即時,為兩個在上單調(diào)遞增函數(shù)的和,則可得在單調(diào)遞增,從而滿足在(2,4)遞增,符合題意;當(dāng),即時,,其在遞減,在遞增,若使在(2,4)遞增,則只需;綜上可得:19、(1)0.08(2)120【解析】理解題意,根據(jù)數(shù)據(jù)列式求解【小問1詳解】由題意,該校往年每年的招生人數(shù)為,“衣物翻新”專業(yè)直接就業(yè)的學(xué)生人數(shù)為,所以所求的概率為【小問2詳解】由表格中的數(shù)據(jù),可得往年各專業(yè)直接就業(yè)的人數(shù)分別為,,,,,,往年全校整體的就業(yè)率為,招生人數(shù)調(diào)整后全校整體的就業(yè)率為,解得20、(1)(2)答案見解析【解析】(1)若選①②,則的解集不可能為;若選②③,,開口向下,則無最小值.只能是選①③,由函數(shù)的解集為可知,-1,3是方程的根,則,又由的最小值可知且在對稱軸上取得最小值,從而解出;(2)由,即,然后對分類求解得答案;【小問1詳解】選①②,則,開口向下,所以的解集不可能為;選①③,函數(shù)的解集為,,3是方程的根,所以的對稱軸為,則,所以,又的最小值為,(1),解得,,所以則;選②③,,開口向下,則無最小值綜上,.【小問2詳解】由化簡得若,則或;若,則不等式解集為R;若,則或當(dāng)時,不等式的解集為或;當(dāng),則不等式解集為R;當(dāng),則不等式的解集為或21、(1)(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度工業(yè)自動化設(shè)備銷售回購服務(wù)合同
- 2025年度智慧城市建設(shè)現(xiàn)場文明生產(chǎn)與規(guī)劃實施合同
- 2025年度農(nóng)業(yè)現(xiàn)代化項目建議書編制指南經(jīng)典模板
- 二零二五旅行社與旅游顧問勞動合同范本3篇
- 2025年度水利工程勘察設(shè)計合同范本-@-1
- 2025年度工業(yè)土地轉(zhuǎn)讓與智慧物流中心共建協(xié)議
- 二零二五年度葡萄園觀光采摘服務(wù)合作協(xié)議
- 2025年度中藥材質(zhì)量檢測服務(wù)合作協(xié)議
- 2025年度校園智能辦公桌椅定制采購合同
- 2025年度房產(chǎn)抵押小額信用貸款協(xié)議
- 2025勞動合同法重點法條導(dǎo)讀附案例詳解
- 2025年全國科技活動周科普知識競賽試題庫及答案
- 2024年全國中學(xué)生生物學(xué)聯(lián)賽試題及答案詳解
- 工廠生產(chǎn)區(qū)清潔流程及安全規(guī)范
- 化學(xué)丨百師聯(lián)盟2025屆高三1月一輪復(fù)習(xí)聯(lián)考(五)化學(xué)試卷及答案
- 2024年全國職業(yè)院校技能大賽中職(酒店服務(wù)賽項)備賽試題庫(500題)
- 工程建設(shè)項目培訓(xùn)
- 2025年1月浙江省高考英語試卷真題(含答案)
- 青海省西寧市市級名校2025屆中考生物全真模擬試題含解析
- 鐵路路基工程施工組織設(shè)計方案
- 小學(xué)班會-交通安全伴我行(共25張課件)
評論
0/150
提交評論