版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2023-2024學年海南省三亞華僑學校數(shù)學高一上期末考試試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12小題,共60分)1.已知函數(shù),,如圖所示,則圖象對應的解析式可能是()A. B.C. D.2.對于函數(shù)定義域中任意的,,當時,總有①;②都成立,則滿足條件的函數(shù)可以是()A. B.C. D.3.直線xa2-A.|b| B.-C.b2 D.4.設全集U=N*,集合A={1,2,5},B={2,4,6},則圖中的陰影部分表示的集合為()A. B.4,C. D.3,5.已知的圖象在上存在個最高點,則的范圍()A. B.C. D.6.函數(shù)f(x)=2x+x-2的零點所在區(qū)間是()A. B.C. D.7.下列命題中不正確的是()A.一組數(shù)據(jù)1,2,3,3,4,5的眾數(shù)大于中位數(shù)B.數(shù)據(jù)6,5,4,3,3,3,2,2,2,1的分位數(shù)為5C.若甲組數(shù)據(jù)的方差為5,乙組數(shù)據(jù)為5,6,9,10,5,則這兩組數(shù)據(jù)中較穩(wěn)定的是乙D.為調(diào)查學生每天平均閱讀時間,某中學從在校學生中,利用分層抽樣的方法抽取初中生20人,高中生10人.經(jīng)調(diào)查,這20名初中生每天平均閱讀時間為60分鐘,這10名高中生每天平均閱讀時間為90分鐘,那么被抽中的30名學生每天平均閱讀時間為70分鐘8.已知函數(shù)f(x)=loga(x+1)(其中a>1),則f(x)<0的解集為()A. B.C. D.9.已知,求的值()A. B.C. D.10.已知直線,,若,則實數(shù)的值為A.8 B.2C. D.-211.若函數(shù)(且)的圖像經(jīng)過定點P,則點P的坐標是()A. B.C. D.12.“”是的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件二、填空題(本大題共4小題,共20分)13.已知函數(shù)是定義在上的奇函數(shù),當時,,則的值為______14.函數(shù),的圖象恒過定點P,則P點的坐標是_____.15.在中,,,則面積的最大值為___________.16.已知為三角形的邊的中點,點滿足,則實數(shù)的值為_______三、解答題(本大題共6小題,共70分)17.已知函數(shù),(1)求的最小正周期;(2)求單調(diào)遞減區(qū)間18.已知函數(shù).(1)求函數(shù)的周期;(2)求函數(shù)的單調(diào)遞增區(qū)間.19.已知角終邊與單位圓交于點(1)求的值;(2)若,求的值.20.計算下列各式的值:(1)lg2(2)sin21.已知函數(shù).(1)判斷的奇偶性并證明;(2)用函數(shù)單調(diào)性的定義證明在區(qū)間上單調(diào)遞增;(3)若對,不等式恒成立,求實數(shù)的取值范圍.22.為了在冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層、某棟房屋要建造能使用20年的隔熱層,每厘米厚的隔熱層的建造成本是6萬元,該棟房屋每年的能源消耗費用C(萬元)與隔熱層厚度x(厘米)滿足關系式:,若無隔熱層,則每年能源消耗費用為5萬元.設為隔熱層建造費用與使用20年的能源消耗費用之和.(1)求和的表達式;(2)當隔熱層修建多少厘米厚時,總費用最小,并求出最小值.
參考答案一、選擇題(本大題共12小題,共60分)1、C【解析】利用奇偶性和定義域,采取排除法可得答案.【詳解】顯然和為奇函數(shù),則和為奇函數(shù),排除A,B,又定義域為,排除D故選:C2、B【解析】根據(jù)函數(shù)在上是增函數(shù),且是上凸函數(shù)判斷.【詳解】由當時,總有,得函數(shù)在上是增函數(shù),由,得函數(shù)是上凸函數(shù),在上是增函數(shù)是增函數(shù),是下凸函數(shù),故A錯誤;在上是增函數(shù)是增函數(shù),是上凸函數(shù),故B正確;在上是增函數(shù),是下凸函數(shù);故C錯誤;在上是減函數(shù),故D錯誤.故選:B3、B【解析】由題意,令x=0,則-yb2=1,即y=-b24、C【解析】由集合,,結(jié)合圖形即可寫出陰影部分表示的集合【詳解】解:根據(jù)條件及圖形,即可得出陰影部分表示的集合為,故選.【點睛】考查列舉法的定義,以及圖表示集合的方法,屬于基礎題.5、A【解析】根據(jù)題意列出周期應滿足的條件,解得,代入周期計算公式即可解得的范圍.【詳解】由題可知,解得,則,故選:A【點睛】本題考查正弦函數(shù)圖像的性質(zhì)與周期,屬于中檔題.6、C【解析】根據(jù)函數(shù)零點的存在性定理可得函數(shù)零點所在的區(qū)間【詳解】解:函數(shù),,(1),根據(jù)函數(shù)零點的存在性定理可得函數(shù)零點所在的區(qū)間為,故選C【點睛】本題主要考查函數(shù)的零點的存在性定理的應用,屬于基礎題7、A【解析】由中位數(shù)以及眾數(shù)判斷A;由百分位數(shù)的定義計算判斷B;計算乙組數(shù)據(jù)的方差判斷C;計算被抽中的30名學生每天平均閱讀時間從而判斷D.【詳解】對于A,中位數(shù)為和眾數(shù)相等,故A錯誤;對于B,將該組數(shù)據(jù)從小到大排列為,,則該組數(shù)據(jù)的分位數(shù)為5,故B正確;對于C,乙組數(shù)據(jù),方差為,則這兩組數(shù)據(jù)中較穩(wěn)定的是乙,故C正確;對于D,被抽中的30名學生每天平均閱讀時間為,故D正確;故選:A8、D【解析】因為已知a的取值范圍,直接根據(jù)根據(jù)對數(shù)函數(shù)的單調(diào)性和定點解出不等式即可【詳解】因為,所以在單調(diào)遞增,所以所以,解得故選D【點睛】在比較大小或解不等式時,靈活運用函數(shù)的單調(diào)性以及常數(shù)和對指數(shù)之間的轉(zhuǎn)化9、A【解析】利用同角三角函數(shù)的基本關系,即可得到答案;【詳解】,故選:A10、A【解析】利用兩條直線平行的充要條件求解【詳解】:∵直線l1:2x+y-2=0,l2:ax+4y+1=0,l1∥l2,∴,解得a=8故選A.【點睛】】本題考查實數(shù)值的求法,是基礎題,解題時要認真審題,注意直線平行的性質(zhì)的靈活運用11、B【解析】由函數(shù)圖像的平移變換或根據(jù)可得.【詳解】因為,所以當,即時,函數(shù)值為定值0,所以點P坐標為.另解:因為可以由向右平移一個單位長度后,再向下平移1個單位長度得到,由過定點,所以過定點.故選:B12、A【解析】先看時,是否成立,即判斷充分性;再看成立時,能否推出,即判斷必要性,由此可得答案.【詳解】當時,,即“”是的充分條件;當時,,則或,則或,即成立,推不出一定成立,故“”不是的必要條件,故選:A.二、填空題(本大題共4小題,共20分)13、1【解析】根據(jù)題意,由函數(shù)在(﹣∞,0)上的解析式可得f(﹣1)的值,又由函數(shù)為奇函數(shù)可得f(1)=﹣f(﹣1),即可得答案【詳解】根據(jù)題意,當x∈(﹣∞,0)時,f(x)=2x3+x2,則f(﹣1)=2×(﹣1)3+(﹣1)2=﹣1,又由函數(shù)奇函數(shù),則f(1)=﹣f(﹣1)=1;故答案為1【點睛】本題考查函數(shù)奇偶性的應用,注意利用奇偶性明確f(1)與f(﹣1)的關系14、【解析】令,解得,且恒成立,所以函數(shù)的圖象恒過定點;故填.15、【解析】利用誘導公式,兩角和與差余弦公式、同角間的三角函數(shù)關系得,得均為銳角,設邊上的高為,由表示出,利用基本不等式求得的最大值,即可得三角形面積最大值【詳解】中,,所以,整理得,即,所以均為銳角,作于,如圖,記,則,,所以,,當且僅當即時等號成立.所以,的最大值為故答案為:16、【解析】根據(jù)向量減法的幾何意義及向量的數(shù)乘便可由得出,再由D為△ABC的邊BC的中點及向量加法的平行四邊形法則即可得出點D為AP的中點,從而便可得出,這樣便可得出λ的值【詳解】=,所以,D為△ABC的邊BC中點,∴∴如圖,D為AP的中點;∴,又,所以-2.故答案為-2.【點睛】本題考查向量減法的幾何意義,向量的數(shù)乘運算,及向量數(shù)乘的幾何意義,向量加法的平行四邊形法則,共線向量基本定理,屬于中檔題.三、解答題(本大題共6小題,共70分)17、(1);(2).【解析】(1)利用求出函數(shù)的最小正周;(2)由求出x的范圍,即得的單調(diào)遞減區(qū)間.【小問1詳解】∵函數(shù),∴,故的最小正周期為.【小問2詳解】由可得,,解之得,所以f(x)的單調(diào)遞減區(qū)間.18、(1)(2)【解析】(1)先把函數(shù)化簡為,利用正弦型函數(shù)的周期公式,即得解(2)由解出的范圍就是所要求的遞增區(qū)間.【小問1詳解】故函數(shù)的周期【小問2詳解】由,得,所以單調(diào)遞增區(qū)間為19、(1);(2)或.【解析】(1)首先根據(jù)三角函數(shù)的定義,求得三角函數(shù)值,再結(jié)合二倍角公式化簡,求值;(2)利用角的變換,利用兩角和的余弦公式,化簡求值.【詳解】解:由三角函數(shù)定義得,(1)(2)∵∴∴當時當時20、(1)1(2)-1【解析】(1)利用對數(shù)的運算性質(zhì)直接計算可得;(2)先進行切化弦,再通分后利用和差角公式和誘導公式即可求得.【小問1詳解】原式=lg2(lg2+lg5)+lg5=lg2+lg5=1【小問2詳解】原式=sin40°(sin10°cos=sin40°(sin10=2=-2=-=-=-121、(1)為奇函數(shù),證明見解析(2)證明見解析(3)【解析】(1)求出函數(shù)的定義域,然后驗證、之間的關系,即可證得函數(shù)為奇函數(shù);(2)任取、,且,作差,因式分解后判斷差值的符號,即可證得結(jié)論成立;(3)由參變量分離法可得出,令,求出函數(shù)在上的最大值,即可得出實數(shù)的取值范圍.【小問1詳解】證明:函數(shù)為奇函數(shù),理由如下:函數(shù)的定義域為,,所以為奇函數(shù).【小問2詳解】證明:任取、,且,則,,,所以,,所以在區(qū)間上單調(diào)遞增.【小問3詳解】解:不等式在上恒成立等價于在上恒成立,令,因為,所以,則有在恒成立,令,,則,所以,所以實數(shù)的取值范圍為.22、(1),(2)隔熱層修建4厘米厚時,總費用達到最小值,最小值為64萬元【解析】(1)由已知,又不建隔熱層,每年能源消耗費用為5萬元.所以可得C(0)=5,由此可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 注冊商標申請書
- 支部條例心得體會
- 2025保姆雇傭合同協(xié)議書
- 2025西瓜產(chǎn)銷合同簡單
- 2025教師試用期合同范本
- 【七年級下冊地理中圖版】5.2 地方文化特色對旅游的影響 同步練習
- 物流快遞前臺工作總結(jié)
- 2025成都市白蟻預防工程合同書模板
- 包裝印刷業(yè)會計工作總結(jié)
- 自動化在財務管理中的應用計劃
- 2024年醫(yī)師定期考核臨床業(yè)務知識考試題庫及答案(共三套)
- 2014新PEP小學英語六年級上冊-Unit5-What-does-he-do復習課件
- 建筑材料供應鏈管理服務合同
- 孩子改名字父母一方委托書
- 2024-2025學年人教版初中物理九年級全一冊《電與磁》單元測試卷(原卷版)
- 江蘇單招英語考綱詞匯
- 2024年事業(yè)單位財務工作計劃例文(6篇)
- 2024年工程咨詢服務承諾書
- 青桔單車保險合同條例
- 車輛使用不過戶免責協(xié)議書范文范本
- 2023-2024學年天津市部分區(qū)九年級(上)期末物理試卷
評論
0/150
提交評論