2024屆甘肅武威市涼州區(qū)高一數(shù)學第一學期期末調(diào)研試題含解析_第1頁
2024屆甘肅武威市涼州區(qū)高一數(shù)學第一學期期末調(diào)研試題含解析_第2頁
2024屆甘肅武威市涼州區(qū)高一數(shù)學第一學期期末調(diào)研試題含解析_第3頁
2024屆甘肅武威市涼州區(qū)高一數(shù)學第一學期期末調(diào)研試題含解析_第4頁
2024屆甘肅武威市涼州區(qū)高一數(shù)學第一學期期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2024屆甘肅武威市涼州區(qū)高一數(shù)學第一學期期末調(diào)研試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.冪函數(shù)的圖像經(jīng)過點,若.則()A.2 B.C. D.2.已知二次函數(shù)值域為,則的最小值為()A.16 B.12C.10 D.83.某國近日開展了大規(guī)模COVID-19核酸檢測,并將數(shù)據(jù)整理如圖所示,其中集合S表示()A.無癥狀感染者 B.發(fā)病者C.未感染者 D.輕癥感染者4.集合A=,B=,則集合AB=()A. B.C. D.5.已知奇函數(shù)的定義域為,其圖象是一條連續(xù)不斷的曲線.若,則函數(shù)在區(qū)間內(nèi)的零點個數(shù)至少為()A.1 B.2C.3 D.46.設函數(shù)的部分圖象如圖,則A.B.C.D.7.已知函數(shù)f(x)是偶函數(shù),且f(x)在上是增函數(shù),若,則不等式的解集為()A.{x|x>2} B.C.{或x>2} D.{或x>2}8.已知集合,則(

)A. B.C. D.9.若過,兩點的直線的傾斜角為,則y等于()A. B.C.1 D.510.函數(shù)的圖象如圖所示,為了得到函數(shù)的圖象,可以把函數(shù)的圖象A.每個點的橫坐標縮短到原來的(縱坐標不變),再向左平移個單位B.每個點橫坐標伸長到原來的倍(縱坐標不變),再向左平移個單位C.先向左平移個單位,再把所得各點的橫坐標伸長到原來的倍(縱坐標不變)D.先向左平移個單位,再把所得各點的橫坐標縮短到原來的(縱坐標不變)二、填空題:本大題共6小題,每小題5分,共30分。11.新高考選課走班“3+1+2”模式指的是:語文、數(shù)學、外語三門學科為必考科目,物理、歷史兩門科目必選一門,化學、生物、思想政治、地理四門科目選兩門.已知在一次選課過程中,甲、乙兩同學選擇科目之間沒有影響,在物理和歷史兩門科目中,甲同學選擇歷史的概率為,乙同學選擇物理的概率為,那么在物理和歷史兩門科目中甲、乙兩同學至少有1人選擇物理的概率為______12.求值:___________.13.在ABC中,H為BC上異于B,C的任一點,M為AH的中點,若,則λ+μ=_________14.已知圓心角為的扇形的面積為,則該扇形的半徑為____.15.已知,則函數(shù)的最大值是__________16.已知函數(shù)的定義域為,當時,,若,則的解集為______三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù),,(1)求的解析式和最小正周期;(2)求在區(qū)間上的最大值和最小值18.已知函數(shù)的定義域為.(1)求;(2)設集合,若,求實數(shù)的取值范圍.19.如圖,是半徑為的半圓,為直徑,點為的中點,點和點為線段的三等分點,平面外一點滿足平面,=.(1)證明:;(2)求點到平面的距離.20.已知函數(shù)的定義域為,在上為增函數(shù),且對任意的,都有(1)試判斷的奇偶性;(2)若,求實數(shù)的取值范圍21.已知二次函數(shù)的圖象過點,且與軸有唯一的交點.(1)求表達式;(2)設函數(shù),若上是單調(diào)函數(shù),求實數(shù)的取值范圍;(3)設函數(shù),記此函數(shù)的最小值為,求的解析式.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】利用待定系數(shù)法求出冪函數(shù)的解析式,再求時的值詳解】解:設冪函數(shù),其圖象經(jīng)過點,,解得,;若,則,解得故選:D2、D【解析】根據(jù)二次函數(shù)的值域求出a和c的關(guān)系,再利用基本不等式即可求的最小值.【詳解】由題意知,,∴且,∴,當且僅當,即,時取等號.故選:D.3、A【解析】由即可判斷S的含義.【詳解】解:由圖可知,集合S是集合A與集合B的交集,所以集合S表示:感染未發(fā)病者,即無癥狀感染者,故選:A.4、B【解析】直接根據(jù)并集的運算可得結(jié)果.【詳解】由并集的運算可得.故選:B.5、C【解析】根據(jù)奇函數(shù)的定義域為R可得,由和奇函數(shù)的性質(zhì)可得、,利用零點的存在性定理即可得出結(jié)果.【詳解】奇函數(shù)的定義域為R,其圖象為一條連續(xù)不斷的曲線,得,由得,所以,故函數(shù)在之間至少存在一個零點,由奇函數(shù)的性質(zhì)可知函數(shù)在之間至少存在一個零點,所以函數(shù)在之間至少存在3個零點.故選:C6、A【解析】根據(jù)函數(shù)的圖象,求出A,和的值,得到函數(shù)的解析式,即可得到結(jié)論【詳解】由圖象知,,則,所以,即,由五點對應法,得,即,即,故選A【點睛】本題主要考查了由三角函數(shù)的圖象求解函數(shù)的解析式,其中解答中根據(jù)條件求出A,和的值是解決本題的關(guān)鍵,著重考查了運算與求解能力,屬于基礎題.7、C【解析】利用函數(shù)的奇偶性和單調(diào)性將不等式等價為,進而可求得結(jié)果.詳解】依題意,不等式,又在上是增函數(shù),所以,即或,解得或.故選:C.8、B【解析】直接利用兩個集合的交集的定義求得M∩N【詳解】集合M={x|x+1≥0}={x|x≥-1},N={x|x2<4}={x|-2<x<2},則M∩N={x|-1≤x<2},故選B【點睛】本題主要考查兩個集合的交集的定義和求法,屬于基礎題9、B【解析】根據(jù)斜率的定義和坐標表達式即可求得結(jié)果.【詳解】,.【點睛】本題考查斜率的定義和坐標表達式,注意認真計算,屬基礎題.10、C【解析】根據(jù)函數(shù)的圖象,設可得再根據(jù)五點法作圖可得故可以把函數(shù)的圖象先向左平移個單位,得到的圖象,再把所得各點的橫坐標伸長到原來的2倍(縱坐標不變),即可得到函數(shù)的圖象,故選C二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】至少1人選擇物理即為1人選擇物理或2人都選擇物理,由題分別得到甲選擇物理的概率與乙選擇歷史的概率,進而求解即可.【詳解】由題,設“在物理和歷史兩門科目中甲、乙兩同學至少有1人選擇物理”事件,則包括有1人選擇物理,或2人都選擇物理,因為甲同學選擇歷史的概率為,則甲同學選擇物理的概率為,因為乙同學選擇物理的概率為,則乙同學選擇歷史的概率為,故,故答案為:12、.【解析】根據(jù)指數(shù)冪的運算性質(zhì),結(jié)合對數(shù)的運算性質(zhì)進行求解即可.【詳解】,故答案為:13、##0.5【解析】根據(jù)題意,用表示出與,求出λ、μ的值即可【詳解】設,則=(1﹣k)+k=,∴故答案為:14、4【解析】由扇形的面積公式列方程即可求解.【詳解】扇形的面積,即,解得:.故答案為:.15、【解析】由函數(shù)變形為,再由基本不等式求得,從而有,即可得到答案.【詳解】∵函數(shù)∴由基本不等式得,當且僅當,即時取等號.∴函數(shù)的最大值是故答案為.【點睛】本題主要考查線性規(guī)劃的應用以及基本不等式的應用,.利用基本不等式求最值時,一定要正確理解和掌握“一正,二定,三相等”的內(nèi)涵:一正是,首先要判斷參數(shù)是否為正;二定是,其次要看和或積是否為定值(和定積最大,積定和最?。?;三相等是,最后一定要驗證等號能否成立(主要注意兩點,一是相等時參數(shù)否在定義域內(nèi),二是多次用或時等號能否同時成立).16、##【解析】構(gòu)造,可得在上單調(diào)遞減.由,轉(zhuǎn)化為,利用單調(diào)性可得答案【詳解】由,得,令,則,又,所以在上單調(diào)遞減由,得,因為,所以,所以,得故答案為:.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),;(2)最大值2,最小值【解析】(1)先將代入,結(jié)合求出函數(shù)解析式,再用公式求出最小正周期.(2)根據(jù),求出的范圍,再求出的范圍,即可得出在區(qū)間上的最大值和最小值.【詳解】解:(1)因為,,所以,所以,又因為,所以,故的解析式為,所以的最小正周期為.(2)因為,所以,所以,則,故在區(qū)間上的最大值2,最小值.【點睛】本題主要考查了三角函數(shù)的恒等變換的應用,三角函數(shù)的性質(zhì),注重對基礎知識的考查.18、(1)A(2)【解析】(1)由函數(shù)的解析式分別令真數(shù)為正數(shù),被開方數(shù)非負確定集合A即可;(2)分類討論和兩種情況確定實數(shù)的取值范圍即可.【詳解】(1)由,解得,由,解得,∴.(2)當時,函數(shù)在上單調(diào)遞增.∵,∴,即.于是.要使,則滿足,解得.∴.當時,函數(shù)在上單調(diào)遞減.∵,∴,即.于是要使,則滿足,解得與矛盾.∴.綜上,實數(shù)的取值范圍為.【點睛】本題主要考查函數(shù)定義域的求解,集合之間的關(guān)系與運算等知識,意在考查學生的轉(zhuǎn)化能力和計算求解能力.19、(1)證明見解析(2)【解析】本題主要考查直線與平面、點到面的距離,考查空間想象能力、推理論證能力(1)證明:∵點E為的中點,且為直徑∴,且∴∵FC∩AC=C∴BE⊥平面FBD∵FD∈平面FBD∴EB⊥FD(2)解:∵,且∴又∵∴∴∵∴∵∴∴∴點到平面的距離點評:立體幾何問題是高考中的熱點問題之一,從近幾年高考來看,立體幾何的考查的分值基本是20分左右,其中小題一兩題,解答題20、(1)奇函數(shù)(2)【解析】(1)抽象函數(shù)用賦值法,再結(jié)合函數(shù)奇偶性的定義判斷即可;(2)利用奇函數(shù)的單調(diào)性和定義及函數(shù)的單調(diào)性,聯(lián)立不等式不等式組,再解不等式組即可.【小問1詳解】因為函數(shù)定義域為,令,得.令,得,即,所以函數(shù)為奇函數(shù)【小問2詳解】由(1)知函數(shù)為奇函數(shù),又知函數(shù)的定義域為,在上為增函數(shù),所以函數(shù)在上為增函數(shù)因為,即,所以,解得,所以實數(shù)的取值范圍為21、(1)(2)或(3)見解析【解析】(1)由已知條件分別求出的值,得出解析式;(2)求出函數(shù)的表達式,由已知得出區(qū)間在對稱軸的一側(cè),進而求出的范圍;(3)函數(shù),對稱軸,圖象開口向上,討論不同情況下在上的單調(diào)性,可得函數(shù)的最小值的解析式試題解析:(1)依題意得,,解得,,,從而;(2),對稱軸為,圖象開口向上當即時,在上單調(diào)遞增,當即

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論